Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neuropharmacology ; 184: 108414, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33249120

RESUMEN

Phosphodiesterases (PDE) are the only enzymes that degrade cAMP and cGMP which are second messengers crucial to memory consolidation. Different PDE inhibitors have been developed and tested for their memory-enhancing potential, but the occurrence of side effects has hampered clinical progression. As separate inhibition of the PDE2 and PDE4 enzyme family has been shown to enhance memory, we investigated whether concurrent treatment with a PDE2 and PDE4 inhibitor can have synergistic effects on memory consolidation processes. We found that combined administration of PF-999 (PDE2 inhibitor) and roflumilast (PDE4 inhibitor) increases the phosphorylation of the AMPA receptor subunit GluR1 and induces CRE-mediated gene expression. Moreover, when combined sub-effective and effective doses of PF-999 and roflumilast were administered after learning, time-dependent forgetting was abolished in an object location memory task. Pharmacokinetic assessment indicated that combined treatment does not alter exposure of the individual compounds. Taken together, these findings suggest that combined PDE2 and PDE4 inhibition has synergistic effects on memory consolidation processes at sub-effective doses, which could therefore provide a therapeutic strategy with an improved safety profile.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 2/antagonistas & inhibidores , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 2/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Consolidación de la Memoria/fisiología , Inhibidores de Fosfodiesterasa 4/administración & dosificación , Animales , Células Cultivadas , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Masculino , Consolidación de la Memoria/efectos de los fármacos , Ratones , Ratas Sprague-Dawley , Ratas Wistar
2.
Sci Rep ; 8(1): 3895, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29497131

RESUMEN

The retrosplenial cortex (RSC) plays a critical role in episodic memory, but the molecular mechanisms governing plasticity in this structure are poorly understood. Diverse studies have demonstrated a role for RSC in acquisition, early consolidation and retrieval similar to the hippocampus (HC), as well as in systems consolidation similar to the anterior cingulate cortex. Here, we asked whether established molecular and structural substrates of memory consolidation in the HC also engage in RSC shortly after learning. We show striking parallels in training induced gene-activation in HC and RSC following contextual conditioning, which is blocked by systemic administration of an NMDA receptor antagonist. Long-term memory is enhanced by retrosplenial and hippocampal knockdown (KD) of the cAMP specific phosphodiesterase Pde4d. However, while training per se induces lasting spine changes in HC, this does not occur in RSC. Instead, increases in the number of mature dendritic spines are found in the RSC only if cAMP signaling is augmented by Pde4d KD, and spine changes are at least partially independent of training. This research highlights parallels and differences in spine plasticity mechanisms between HC and RSC, and provides evidence for a functional dissociation of the two.


Asunto(s)
Corteza Cerebral/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Memoria/fisiología , Animales , Miedo/fisiología , Giro del Cíngulo/metabolismo , Hipocampo/metabolismo , Masculino , Consolidación de la Memoria/fisiología , Memoria a Largo Plazo/fisiología , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal/fisiología , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/metabolismo
3.
Cell ; 149(5): 1112-24, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-22632974

RESUMEN

Activity-dependent gene expression triggered by Ca(2+) entry into neurons is critical for learning and memory, but whether specific sources of Ca(2+) act distinctly or merely supply Ca(2+) to a common pool remains uncertain. Here, we report that both signaling modes coexist and pertain to Ca(V)1 and Ca(V)2 channels, respectively, coupling membrane depolarization to CREB phosphorylation and gene expression. Ca(V)1 channels are advantaged in their voltage-dependent gating and use nanodomain Ca(2+) to drive local CaMKII aggregation and trigger communication with the nucleus. In contrast, Ca(V)2 channels must elevate [Ca(2+)](i) microns away and promote CaMKII aggregation at Ca(V)1 channels. Consequently, Ca(V)2 channels are ~10-fold less effective in signaling to the nucleus than are Ca(V)1 channels for the same bulk [Ca(2+)](i) increase. Furthermore, Ca(V)2-mediated Ca(2+) rises are preferentially curbed by uptake into the endoplasmic reticulum and mitochondria. This source-biased buffering limits the spatial spread of Ca(2+), further attenuating Ca(V)2-mediated gene expression.


Asunto(s)
Proteína de Unión a CREB/metabolismo , Canales de Calcio Tipo L/metabolismo , Canales de Calcio Tipo N/metabolismo , Señalización del Calcio , Hipocampo/metabolismo , Animales , Calcio/metabolismo , Núcleo Celular/metabolismo , Expresión Génica , Hipocampo/citología , Mitocondrias/metabolismo , Ratas , Ratas Sprague-Dawley
4.
Neurosci Res ; 70(1): 2-8, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21352861

RESUMEN

In excitable cells, membrane depolarization and activation of voltage-gated Ca²+ (Ca(V)) channels trigger numerous cellular responses, including muscle contraction, secretion, and gene expression. Yet, while the mechanisms underlying excitation-contraction and excitation-secretion coupling have been extensively characterized, how neuronal activity is coupled to gene expression has remained more elusive. In this article, we will discuss recent progress toward understanding the relationship between patterns of channel activity driven by membrane depolarization and activation of the nuclear transcription factor CREB. We show that signaling strength is steeply dependent on membrane depolarization and is more sensitive to the open probability of Ca(V) channels than the Ca²+ entry itself. Furthermore, our data indicate that by decoding Ca(V) channel activity, CaMKII (a Ca²+/calmodulin-dependent protein kinase) links membrane excitation to activation of CREB in the nucleus. Together, these results revealed some interesting and unexpected similarities between excitation-transcription coupling and other forms of excitation-response coupling.


Asunto(s)
Potenciales de Acción/fisiología , Canales de Calcio/fisiología , Ganglios Simpáticos/fisiología , Neuronas/fisiología , Animales , Canales de Calcio/genética , Señalización del Calcio/fisiología , Ganglios Simpáticos/citología , Humanos
5.
Neuron ; 62(2): 205-17, 2009 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-19409266

RESUMEN

N-methyl-D-aspartate receptors (NMDARs) play important functions in neural development. NR2B is the predominant NR2 subunit of NMDAR in the developing brain. Here we use mosaic analysis with double markers (MADM) to knock out NR2B in isolated single cells and analyze its cell-autonomous function in dendrite development. NR2B mutant dentate gyrus granule cells (dGCs) and barrel cortex layer 4 spiny stellate cells (bSCs) have similar dendritic growth rates, total length, and branch number as control cells. However, mutant dGCs maintain supernumerary primary dendrites resulting from a pruning defect. Furthermore, while control bSCs restrict dendritic growth to a single barrel, mutant bSCs maintain dendritic growth in multiple barrels. Thus, NR2B functions cell autonomously to regulate dendrite patterning to ensure that sensory information is properly represented in the cortex. Our study also indicates that molecular mechanisms that regulate activity-dependent dendrite patterning can be separated from those that control general dendrite growth and branching.


Asunto(s)
Tipificación del Cuerpo , Dendritas/fisiología , Neuronas/citología , Neuronas/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Factores de Edad , Animales , Animales Recién Nacidos , Tipificación del Cuerpo/genética , Calcio/metabolismo , Recuento de Células , Corteza Cerebral/citología , Dendritas/efectos de los fármacos , Giro Dentado/citología , Desoxiuridina , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Ratones , Ratones Noqueados , Modelos Biológicos , Neuronas/clasificación , Neuronas/efectos de los fármacos , Fosfopiruvato Hidratasa/metabolismo , Receptores de N-Metil-D-Aspartato/deficiencia , Receptores de N-Metil-D-Aspartato/genética
6.
J Cell Biol ; 183(5): 849-63, 2008 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-19047462

RESUMEN

Communication between cell surface proteins and the nucleus is integral to many cellular adaptations. In the case of ion channels in excitable cells, the dynamics of signaling to the nucleus are particularly important because the natural stimulus, surface membrane depolarization, is rapidly pulsatile. To better understand excitation-transcription coupling we characterized the dependence of cAMP response element-binding protein phosphorylation, a critical step in neuronal plasticity, on the level and duration of membrane depolarization. We find that signaling strength is steeply dependent on depolarization, with sensitivity far greater than hitherto recognized. In contrast, graded blockade of the Ca(2+) channel pore has a remarkably mild effect, although some Ca(2+) entry is absolutely required. Our data indicate that Ca(2+)/CaM-dependent protein kinase II acting near the channel couples local Ca(2+) rises to signal transduction, encoding the frequency of Ca(2+) channel openings rather than integrated Ca(2+) flux-a form of digital logic.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Núcleo Celular/enzimología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Transducción de Señal , Ganglio Cervical Superior/enzimología , Transcripción Genética , Animales , Animales Recién Nacidos , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/efectos de los fármacos , Canales de Calcio Tipo L/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Membrana Celular/enzimología , Núcleo Celular/efectos de los fármacos , Células Cultivadas , Potenciales de la Membrana , Neuronas/enzimología , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Ganglio Cervical Superior/citología , Ganglio Cervical Superior/efectos de los fármacos , Factores de Tiempo , Transcripción Genética/efectos de los fármacos , Transfección
7.
Neuropharmacology ; 51(1): 27-36, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16631827

RESUMEN

Nicotinic acetylcholine receptors (nAChRs) are inhibited by several drugs that are commonly thought to be specific for L-type calcium channels (LTCCs). In neurons, LTCCs are activated by nicotine-induced depolarization to engage downstream signaling events; however, the role of LTCC drug interactions with nAChRs in signaling has not been examined in detail. We investigated the effects of LTCC ligands on nAChR currents and downstream signaling in rat superior cervical ganglion (SCG) neurons. We found that 10microM nicotine and 40mM K(+) both reversibly depolarize SCG neurons to -20mV, sufficient to activate LTCCs and downstream signaling, including induction of nuclear phospho-CREB (pCREB); this induction was blocked by LTCC antagonists. Interestingly, the effects of LTCC antagonists on nicotine-induced signaling to CREB are not mediated by their actions on LTCCs, but rather via inhibition of nAChRs, which prevents nicotine-induced depolarization. We show that this effect is sufficient to block pCREB induction in neurons expressing an antagonist-insensitive LTCC. Taken together, our data show that, at concentrations typically used to block LTCCs, these antagonists inhibit nAChR currents and downstream signaling. These findings serve as a caution in attributing a role for LTCCs when using these drugs experimentally or therapeutically.


Asunto(s)
Canales de Calcio Tipo L/efectos de los fármacos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/fisiología , Antagonistas Nicotínicos/farmacología , Receptores Nicotínicos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Bloqueadores de los Canales de Calcio/farmacología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/antagonistas & inhibidores , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/biosíntesis , Infecciones por Citomegalovirus/genética , Infecciones por Citomegalovirus/fisiopatología , Interpretación Estadística de Datos , Dihidropiridinas/farmacología , Estimulación Eléctrica , Electrofisiología , Inmunohistoquímica , Ligandos , Mutagénesis/genética , Neuronas/metabolismo , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Ganglio Cervical Superior/citología , Ganglio Cervical Superior/efectos de los fármacos
8.
Mol Cell Neurosci ; 26(1): 50-62, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15121178

RESUMEN

The developing nervous system adapts to a wide array of stimuli, in part, by evoking activity-dependent mechanisms that signal to the nucleus and induce long-term modifications in neuronal function. It is well established that one such stimulus is strong synaptic activity. Our interest, however, is whether weak activity generated at developing synapses also signals to the nucleus and if so, can these signals be modulated by extrinsic factors. Using cultured hippocampal neurons and a highly sensitive readout of CRE-mediated gene expression, we demonstrate that weak synaptic transmission, including non-evoked, spontaneous transmitter release, induces ongoing gene expression. These weak synaptic stimuli, acting through NMDA receptors, signal to the nucleus through a MAPK pathway, without a significant contribution of L-type Ca2+ channels. In addition, we show that BDNF, a molecule that has clear effects on synaptic plasticity, enhances this CRE-dependent gene expression by acting upstream of NMDA receptors. On the other hand, low levels of nicotine, which also effects synaptic plasticity, suppress ongoing CRE-mediated gene expression indirectly by acting on GABAergic neurons; this indirect action on gene expression suggests an alternative mechanism for how nicotine produces long-lasting changes.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/farmacología , Núcleo Celular/metabolismo , Hipocampo/embriología , Neuronas/metabolismo , Nicotina/farmacología , Transmisión Sináptica/fisiología , Factor de Transcripción Activador 2 , Animales , Canales de Calcio Tipo L/efectos de los fármacos , Canales de Calcio Tipo L/metabolismo , Núcleo Celular/efectos de los fármacos , Células Cultivadas , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/efectos de los fármacos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/genética , Vectores Genéticos/genética , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Integrasas/genética , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/genética , Neuronas/efectos de los fármacos , Ratas , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Transmisión Sináptica/efectos de los fármacos , Factores de Transcripción/efectos de los fármacos , Factores de Transcripción/metabolismo , Proteínas Virales/genética , Ácido gamma-Aminobutírico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...