Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38825025

RESUMEN

INTRODUCTION: Eicosanoids are lipid mediators including thromboxanes (TXs), prostaglandins (PGs) and leukotrienes (LTs) with a pathophysiological role in established atopic disease. However, their role in the inception of disease is unclear. We aimed to investigate the association between urinary eicosanoids in early life and development of atopic disease. METHODS: We quantified the levels of 21 eicosanoids in urine from children from the COPSAC2010 (age 1 year, n=450) and VDAART (age 3 years, n=575) mother-child cohorts and analyzed the associations with development of wheeze/asthma, atopic dermatitis, and biomarkers of Type-2 inflammation, applying FDR5% multiple testing correction. RESULTS: In both cohorts, analyses adjusted for environmental determinants showed that higher TXA2 eicosanoids in early life were associated with increased risk of developing atopic dermatitis (P

2.
Metabolomics ; 20(3): 60, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773013

RESUMEN

Metabolomic epidemiology studies are complex and require a broad array of domain expertise. Although many metabolite-phenotype associations have been identified; to date, few findings have been translated to the clinic. Bridging this gap requires understanding of both the underlying biology of these associations and their potential clinical implications, necessitating an interdisciplinary team approach. To address this need in metabolomic epidemiology, a workshop was held at Metabolomics 2023 in Niagara Falls, Ontario, Canada that highlighted the domain expertise needed to effectively conduct these studies -- biochemistry, clinical science, epidemiology, and assay development for biomarker validation -- and emphasized the role of interdisciplinary teams to move findings towards clinical translation.


Asunto(s)
Metabolómica , Investigación Biomédica Traslacional , Metabolómica/métodos , Humanos , Biomarcadores/metabolismo , Ontario
3.
EBioMedicine ; 102: 105025, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38458111

RESUMEN

BACKGROUND: Lung function trajectories (LFTs) have been shown to be an important measure of long-term health in asthma. While there is a growing body of metabolomic studies on asthma status and other phenotypes, there are no prospective studies of the relationship between metabolomics and LFTs or their genomic determinants. METHODS: We utilized ordinal logistic regression to identify plasma metabolite principal components associated with four previously-published LFTs in children from the Childhood Asthma Management Program (CAMP) (n = 660). The top significant metabolite principal component (PCLF) was evaluated in an independent cross-sectional child cohort, the Genetic Epidemiology of Asthma in Costa Rica Study (GACRS) (n = 1151) and evaluated for association with spirometric measures. Using meta-analysis of CAMP and GACRS, we identified associations between PCLF and microRNA, and SNPs in their target genes. Statistical significance was determined using an false discovery rate-adjusted Q-value. FINDINGS: The top metabolite principal component, PCLF, was significantly associated with better LFTs after multiple-testing correction (Q-value = 0.03). PCLF is composed of the urea cycle, caffeine, corticosteroid, carnitine, and potential microbial (secondary bile acid, tryptophan, linoleate, histidine metabolism) metabolites. Higher levels of PCLF were also associated with increases in lung function measures and decreased circulating neutrophil percentage in both CAMP and GACRS. PCLF was also significantly associated with microRNA miR-143-3p, and SNPs in three miR-143-3p target genes; CCZ1 (P-value = 2.6 × 10-5), SLC8A1 (P-value = 3.9 × 10-5); and TENM4 (P-value = 4.9 × 10-5). INTERPRETATION: This study reveals associations between metabolites, miR-143-3p and LFTs in children with asthma, offering insights into asthma physiology and possible interventions to enhance lung function and long-term health. FUNDING: Molecular data for CAMP and GACRS via the Trans-Omics in Precision Medicine (TOPMed) program was supported by the National Heart, Lung, and Blood Institute (NHLBI).


Asunto(s)
Asma , MicroARNs , Niño , Humanos , Estudios Transversales , Pulmón/metabolismo , MicroARNs/metabolismo , Metabolómica
5.
Respir Res ; 25(1): 86, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38336805

RESUMEN

BACKGROUND: Bronchopulmonary Dysplasia (BPD) in infants born prematurely is a risk factor for chronic airway obstruction later in life. The distribution of T cell subtypes in the large airways is largely unknown. OBJECTIVE: To characterize cellular and T cell profiles in the large airways of young adults with a history of BPD. METHODS: Forty-three young adults born prematurely (preterm (n = 20), BPD (n = 23)) and 45 full-term-born (asthma (n = 23), healthy (n = 22)) underwent lung function measurements, and bronchoscopy with large airway bronchial wash (BW). T-cells subsets in BW were analyzed by immunocytochemistry. RESULTS: The proportions of both lymphocytes and CD8 + T cells in BW were significantly higher in BPD (median, 6.6%, and 78.0%) when compared with asthma (3.4% and 67.8%, p = 0.002 and p = 0.040) and healthy (3.8% and 40%, p < 0.001 and p < 0.001). In all adults born prematurely (preterm and BPD), lymphocyte proportion correlated negatively with forced vital capacity (r= -0.324, p = 0.036) and CD8 + T cells correlated with forced expiratory volume in one second, FEV1 (r=-0.448, p = 0.048). Correlation-based network analysis revealed that lung function cluster and BPD-birth cluster were associated with lymphocytes and/or CD4 + and CD8 + T cells. Multivariate regression analysis showed that lymphocyte proportions and BPD severity qualified as independent factors associated with FEV1. CONCLUSIONS: The increased cytotoxic T cells in the large airways in young adults with former BPD, suggest a similar T-cell subset pattern as in the small airways, resembling features of COPD. Our findings strengthen the hypothesis that mechanisms involving adaptive and innate immune responses are involved in the development of airway disease due to preterm birth.


Asunto(s)
Asma , Displasia Broncopulmonar , Nacimiento Prematuro , Enfermedad Pulmonar Obstructiva Crónica , Lactante , Femenino , Adulto Joven , Humanos , Recién Nacido , Displasia Broncopulmonar/diagnóstico , Volumen Espiratorio Forzado/fisiología , Pruebas de Función Respiratoria , Asma/complicaciones , Enfermedad Pulmonar Obstructiva Crónica/complicaciones
6.
J Nutr ; 154(2): 395-402, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38081585

RESUMEN

BACKGROUND: Oxylipins are products derived from polyunsaturated fatty acids (PUFAs) that play a role in cardiovascular disease and aging. Fish oil-derived n-3 PUFAs promote the formation of anti-inflammatory and vasodilatory oxylipins; however, there are little data on oxylipins derived from α-linolenic acid (C18:3n-3), the primary plant-derived n-3 PUFA. Walnuts are a source of C18:3n-3. OBJECTIVES: To investigate the effect on serum oxylipins of a diet enriched with walnuts at 15% energy (30-60 g/d; 2.6-5.2 g C18:3n-3/d) for 2 y compared to a control diet (abstention from walnuts) in healthy older males and females (63-79 y). METHODS: The red blood cell proportion of α-linolenic acid was determined by gas chromatography as a measure of compliance. Ultra-performance liquid chromatography-tandem mass spectrometry was used to measure serum concentrations of 53 oxylipins in participants randomly assigned to receive the walnut diet (n = 64) or the control diet (n = 51). Two-year concentration changes (final minus baseline) were log-transformed (base log-10) and standardized (mean-centered and divided by the standard deviation of each variable). Volcano plots were then generated (fold change ≥1.5; false discovery rate ≤0.1). For each oxylipin delta surviving multiple testing, we further assessed between-intervention group differences by analysis of covariance adjusting for age, sex, BMI, and the baseline concentration of the oxylipin. RESULTS: The 2-y change in red blood cell C18:3n-3 in the walnut group was significantly higher than that in the control group (P < 0.001). Compared to the control diet, the walnut diet resulted in statistically significantly greater increases in 3 C18:3n-3-derived oxylipins (9-HOTrE, 13-HOTrE, and 12,13-EpODE) and in the C20:5n-3 derived 14,15-diHETE, and greater reductions of the C20:4n-6-derived 5-HETE, 19-HETE, and 5,6-diHETrE. CONCLUSIONS: Long-term walnut consumption changes the serum oxylipin profile in healthy older persons. Our results add novel mechanistic evidence on the cardioprotective effects of walnuts. TRIAL REGISTRATION: Clinicaltrials.gov Identifier: NCT01634841.


Asunto(s)
Ácidos Grasos Omega-3 , Juglans , Masculino , Femenino , Humanos , Anciano , Anciano de 80 o más Años , Oxilipinas , Ácido alfa-Linolénico , Dieta , Ácidos Grasos Insaturados , Ácidos Grasos Omega-3/farmacología
7.
Prostaglandins Other Lipid Mediat ; 170: 106789, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37879396

RESUMEN

Urinary eicosanoid concentrations reflect inflammatory processes in multiple diseases and have been used as biomarkers of disease as well as suggested for patient stratification in precision medicine. However, implementation of urinary eicosanoid profiling in large-scale analyses is restricted due to sample preparation limits. Here we demonstrate a single solid-phase extraction of 300 µL urine in 96-well-format for prostaglandins, thromboxanes, isoprostanes, cysteinyl-leukotriene E4 and the linoleic acid-derived dihydroxy-octadecenoic acids (9,10- and 12,13-DiHOME). A simultaneous screening protocol was also developed for cortisol/cortisone and 7 exogenous steroids as well as 3 cyclooxygenase inhibitors. Satisfactory performance for quantification of eicosanoids with an appropriate internal standard was demonstrated for intra-plate analyses (CV = 8.5-15.1%) as well as for inter-plate (n = 35) from multiple studies (CV = 22.1-34.9%). Storage stability was evaluated at - 20 °C, and polar tetranors evidenced a 50% decrease after 5 months, while the remaining eicosanoids evidenced no significant degradation. All eicosanoids were stable over 3.5-years in urine stored at - 80 °C. This method will facilitate the implementation of urinary eicosanoid quantification in large-scale screening.


Asunto(s)
Cromatografía Líquida con Espectrometría de Masas , Espectrometría de Masas en Tándem , Humanos , Cromatografía Liquida , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas en Tándem/métodos , Eicosanoides/metabolismo
8.
Allergy ; 79(2): 404-418, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38014461

RESUMEN

BACKGROUND: While dysregulated sphingolipid metabolism has been associated with risk of childhood asthma, the specific sphingolipid classes and/or mechanisms driving this relationship remain unclear. We aimed to understand the multifaceted role between sphingolipids and other established asthma risk factors that complicate this relationship. METHODS: We performed targeted LC-MS/MS-based quantification of 77 sphingolipids in plasma from 997 children aged 6 years from two independent cohorts (VDAART and COPSAC2010 ). We examined associations of circulatory sphingolipids with childhood asthma, lung function, and three asthma risk factors: functional SNPs in ORMDL3, low vitamin D levels, and reduced gut microbial maturity. Given racial differences between these cohorts, association analyses were performed separately and then meta-analyzed together. RESULTS: We observed elevations in circulatory sphingolipids with asthma phenotypes and risk factors; however, there were differential associations of sphingolipid classes with clinical outcomes and/or risk factors. While elevations from metabolites involved in ceramide recycling and catabolic pathways were associated with asthma and worse lung function [meta p-value range: 1.863E-04 to 2.24E-3], increased ceramide levels were associated with asthma risk factors [meta p-value range: 7.75E-5 to .013], but not asthma. Further investigation identified that some ceramides acted as mediators while some interacted with risk factors in the associations with asthma outcomes. CONCLUSION: This study demonstrates the differential role that sphingolipid subclasses may play in asthma and its risk factors. While overall elevations in sphingolipids appeared to be deleterious overall; elevations in ceramides were uniquely associated with increases in asthma risk factors only; while elevations in asthma phenotypes were associated with recycling sphingolipids. Modification of asthma risk factors may play an important role in regulating sphingolipid homeostasis via ceramides to affect asthma. Further function work may validate the observed associations.


Asunto(s)
Asma , Esfingolípidos , Niño , Humanos , Esfingolípidos/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Ceramidas/metabolismo , Asma/etiología , Asma/genética , Factores de Riesgo
9.
Eur Respir Rev ; 32(170)2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37914192

RESUMEN

Asthma is the most common chronic disease within the paediatric population. Although it is multifactorial, its onset may be linked to early-life exposures with subsequent impact on immune system development. Microbial and dietary metabolic products have been implicated in the development and exacerbation of paediatric asthma. Linoleic acid is the most common omega-6 polyunsaturated fatty acid in the Western diet. In this review, we summarise the literature regarding the involvement of linoleic acid in the development of and its impact on existing paediatric asthma. First, we summarise the existing knowledge surrounding the relationship between human microbial metabolism and allergic diseases in children. Next, we examine cellular or animal model-based mechanistic studies that investigated the impact of dietary- and microbial-derived linoleic acid metabolites on asthma. Finally, we review the literature investigating the impact of linoleic acid metabolites on the development and exacerbation of childhood asthma. While there is conflicting evidence, there is growing support for a role of linoleic acid in the onset and pathophysiology of asthma. We recommend that additional cellular, animal, and longitudinal studies are performed that target linoleic acid and its metabolites.


Asunto(s)
Asma , Ácido Linoleico , Niño , Animales , Humanos , Asma/tratamiento farmacológico , Asma/metabolismo
10.
ERJ Open Res ; 9(5)2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37868143

RESUMEN

Rationale: Patients with severe asthma are dependent upon treatment with high doses of inhaled corticosteroids (ICS) and often also oral corticosteroids (OCS). The extent of endogenous androgenic anabolic steroid (EAAS) suppression in asthma has not previously been described in detail. The objective of the present study was to measure urinary concentrations of EAAS in relation to exogenous corticosteroid exposure. Methods: Urine collected at baseline in the U-BIOPRED (Unbiased Biomarkers for the Prediction of Respiratory Disease outcomes) study of severe adult asthmatics (SA, n=408) was analysed by quantitative mass spectrometry. Data were compared to that of mild-to-moderate asthmatics (MMA, n=70) and healthy subjects (HC, n=98) from the same study. Measurements and main results: The concentrations of urinary endogenous steroid metabolites were substantially lower in SA than in MMA or HC. These differences were more pronounced in SA patients with detectable urinary OCS metabolites. Their dehydroepiandrosterone sulfate (DHEA-S) concentrations were <5% of those in HC, and cortisol concentrations were below the detection limit in 75% of females and 82% of males. The concentrations of EAAS in OCS-positive patients, as well as patients on high-dose ICS only, were more suppressed in females than males (p<0.05). Low levels of DHEA were associated with features of more severe disease and were more prevalent in females (p<0.05). The association between low EAAS and corticosteroid treatment was replicated in 289 of the SA patients at follow-up after 12-18 months. Conclusion: The pronounced suppression of endogenous anabolic androgens in females might contribute to sex differences regarding the prevalence of severe asthma.

11.
Nat Metab ; 5(10): 1747-1764, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37605057

RESUMEN

T cell function and fate can be influenced by several metabolites: in some cases, acting through enzymatic inhibition of α-ketoglutarate-dependent dioxygenases, in others, through post-translational modification of lysines in important targets. We show here that glutarate, a product of amino acid catabolism, has the capacity to do both, and has potent effects on T cell function and differentiation. We found that glutarate exerts those effects both through α-ketoglutarate-dependent dioxygenase inhibition, and through direct regulation of T cell metabolism via glutarylation of the pyruvate dehydrogenase E2 subunit. Administration of diethyl glutarate, a cell-permeable form of glutarate, alters CD8+ T cell differentiation and increases cytotoxicity against target cells. In vivo administration of the compound is correlated with increased levels of both peripheral and intratumoural cytotoxic CD8+ T cells. These results demonstrate that glutarate is an important regulator of T cell metabolism and differentiation with a potential role in the improvement of T cell immunotherapy.


Asunto(s)
Fenómenos Bioquímicos , Linfocitos T CD8-positivos , Linfocitos T CD8-positivos/metabolismo , Glutaratos/metabolismo
12.
J Allergy Clin Immunol ; 152(6): 1646-1657.e11, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37558060

RESUMEN

BACKGROUND: Gestational vitamin D deficiency is implicated in development of respiratory diseases in offspring, but the mechanism underlying this relationship is unknown. OBJECTIVE: We sought to study the link between gestational vitamin D exposure and childhood asthma phenotypes using maternal blood metabolomics profiling. METHODS: Untargeted blood metabolic profiles were acquired using liquid chromatography-mass spectrometry at 1 week postpartum from 672 women in the Copenhagen Prospective Studies on Asthma in Childhood2010 (COPSAC2010) mother-child cohort and at pregnancy weeks 32 to 38 from 779 women in the Vitamin D Antenatal Asthma Reduction Trial (VDAART) mother-child cohort. In COPSAC2010, we employed multivariate models and pathway enrichment analysis to identify metabolites and pathways associated with gestational vitamin D blood levels and investigated their relationship with development of asthma phenotypes in early childhood. The findings were validated in VDAART and in cellular models. RESULTS: In COPSAC2010, higher vitamin D blood levels at 1 week postpartum were associated with distinct maternal metabolome perturbations with significant enrichment of the sphingomyelin pathway (P < .01). This vitamin D-related maternal metabolic profile at 1 week postpartum containing 46 metabolites was associated with decreased risk of recurrent wheeze (hazard ratio [HR] = 0.92 [95% CI 0.86-0.98], P = .01) and wheeze exacerbations (HR = 0.90 [95% CI 0.84-0.97], P = .01) at ages 0 to 3 years. The same metabolic profile was similarly associated with decreased risk of asthma/wheeze at ages 0 to 3 in VDAART (odds ratio = 0.92 [95% CI 0.85-0.99], P = .04). Human bronchial epithelial cells treated with high-dose vitamin D3 showed an increased cytoplasmic sphingolipid level (P < .01). CONCLUSIONS: This exploratory metabolomics study in 2 independent birth cohorts demonstrates that the beneficial effect of higher gestational vitamin D exposure on offspring respiratory health is characterized by specific maternal metabolic alterations during pregnancy, which involves the sphingomyelin pathway.


Asunto(s)
Asma , Vitamina D , Preescolar , Femenino , Humanos , Embarazo , Metaboloma , Estudios Prospectivos , Ruidos Respiratorios , Esfingomielinas , Ensayos Clínicos como Asunto
13.
Sci Rep ; 13(1): 10461, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37380711

RESUMEN

Respiratory infections are a leading cause of morbidity and mortality in early life, and recurrent infections increase the risk of developing chronic diseases. The maternal environment during pregnancy can impact offspring health, but the factors leading to increased infection proneness have not been well characterized during this period. Steroids have been implicated in respiratory health outcomes and may similarly influence infection susceptibility. Our objective was to describe relationships between maternal steroid levels and offspring infection proneness. Using adjusted Poisson regression models, we evaluated associations between sixteen androgenic and corticosteroid metabolites during pregnancy and offspring respiratory infection incidence across two pre-birth cohorts (N = 774 in VDAART and N = 729 in COPSAC). Steroid metabolites were measured in plasma samples from pregnant mothers across all trimesters of pregnancy by ultrahigh-performance-liquid-chromatography/mass-spectrometry. We conducted further inquiry into associations of steroids with related respiratory outcomes: asthma and lung function spirometry. Higher plasma corticosteroid levels in the third trimester of pregnancy were associated with lower incidence of offspring respiratory infections (P = 4.45 × 10-7 to 0.002) and improved lung function metrics (P = 0.020-0.036). Elevated maternal androgens were generally associated with increased offspring respiratory infections and worse lung function, with some associations demonstrating nominal significance at P < 0.05, but these trends were inconsistent across individual androgens. Increased maternal plasma corticosteroid levels in the late second and third trimesters were associated with lower infections and better lung function in offspring, which may represent a potential avenue for intervention through corticosteroid supplementation in late pregnancy to reduce offspring respiratory infection susceptibility in early life.Clinical Trial Registry information: VDAART and COPSAC were originally conducted as clinical trials; VDAART: ClinicalTrials.gov identifier NCT00920621; COPSAC: ClinicalTrials.gov identifier NCT00798226.


Asunto(s)
Andrógenos , Asma , Femenino , Humanos , Embarazo , Corticoesteroides , Asma/epidemiología , Benchmarking , Cohorte de Nacimiento
14.
J Invest Dermatol ; 143(10): 2039-2051.e10, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37061123

RESUMEN

Impaired skin wound healing is a significant global health issue, especially among the elderly. Wound healing is a well-orchestrated process involving the sequential phases of inflammation, proliferation, and tissue remodeling. Although wound healing is a highly dynamic and energy-requiring process, the role of metabolism remains largely unexplored. By combining transcriptomics and metabolomics of human skin biopsy samples, we mapped the core bioenergetic and metabolic changes in normal acute as well as chronic wounds in elderly subjects. We found upregulation of glycolysis, the tricarboxylic acid cycle, glutaminolysis, and ß-oxidation in the later stages of acute wound healing and in chronic wounds. To ascertain the role of these metabolic pathways on wound healing, we targeted each pathway in a wound healing assay as well as in a human skin explant model using metabolic inhibitors and stimulants. Enhancement or inhibition of glycolysis and, to a lesser extent, glutaminolysis had a far greater impact on wound healing than similar manipulations of oxidative phosphorylation and fatty acid ß-oxidation. These findings increase the understanding of wound metabolism and identify glycolysis and glutaminolysis as potential targets for therapeutic intervention.


Asunto(s)
Piel , Cicatrización de Heridas , Humanos , Anciano , Cicatrización de Heridas/fisiología , Piel/patología , Redes y Vías Metabólicas , Glucólisis , Metabolómica
15.
J Intern Med ; 294(4): 378-396, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37093654

RESUMEN

Complex diseases are caused by a combination of genetic, lifestyle, and environmental factors and comprise common noncommunicable diseases, including allergies, cardiovascular disease, and psychiatric and metabolic disorders. More than 25% of Europeans suffer from a complex disease, and together these diseases account for 70% of all deaths. The use of genomic, molecular, or imaging data to develop accurate diagnostic tools for treatment recommendations and preventive strategies, and for disease prognosis and prediction, is an important step toward precision medicine. However, for complex diseases, precision medicine is associated with several challenges. There is a significant heterogeneity between patients of a specific disease-both with regards to symptoms and underlying causal mechanisms-and the number of underlying genetic and nongenetic risk factors is often high. Here, we summarize precision medicine approaches for complex diseases and highlight the current breakthroughs as well as the challenges. We conclude that genomic-based precision medicine has been used mainly for patients with highly penetrant monogenic disease forms, such as cardiomyopathies. However, for most complex diseases-including psychiatric disorders and allergies-available polygenic risk scores are more probabilistic than deterministic and have not yet been validated for clinical utility. However, subclassifying patients of a specific disease into discrete homogenous subtypes based on molecular or phenotypic data is a promising strategy for improving diagnosis, prediction, treatment, prevention, and prognosis. The availability of high-throughput molecular technologies, together with large collections of health data and novel data-driven approaches, offers promise toward improved individual health through precision medicine.


Asunto(s)
Trastornos Mentales , Medicina de Precisión , Humanos , Medicina de Precisión/métodos , Genómica/métodos , Factores de Riesgo
16.
Respir Res ; 24(1): 15, 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36639661

RESUMEN

BACKGROUND: Chronic respiratory diseases are disorders of the airways and other structures of the lung, and include chronic obstructive pulmonary disease (COPD), lung cancer, asthma, bronchiectasis, interstitial lung diseases, occupational lung diseases and pulmonary hypertension. Through this article we take a broad view of chronic lung disease while highlighting (1) the complex interactions of lung diseases with environmental factors (e.g. climate change, smoking and vaping) and multimorbidity and (2) proposed areas to strengthen for better global patient outcomes. CONCLUSION: We suggest new directions for the research agenda in high-priority populations and those experiencing health disparities. We call for lung disease to be made a research priority with greater funding allocation globally.


Asunto(s)
Asma , Enfermedades Pulmonares Intersticiales , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Enfermedad Crónica , Pulmón
17.
Free Radic Biol Med ; 194: 308-315, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36509313

RESUMEN

Proinflammatory bioactive lipid mediators and oxidative stress are increased in coronavirus disease 2019 (COVID-19). The randomized controlled single-blind trial COVID-Omega-F showed that intravenous omega-3 polyunsaturated fatty acids (n-3 PUFA) shifted the plasma lipid signature of COVID-19 towards increased proresolving precursor levels and decreased leukotoxin diols, associated with a beneficial immunodulatory response. The present study aimed to determine the effects of n-3 PUFA on the urinary oxylipidome and oxidative stress in COVID-19. From the COVID-Omega-F trial, 20 patients hospitalized for COVID-19 had available serial urinary samples collected at baseline, after 24-48 h, and after completing 5 days treatment with one daily intravenous infusion (2 mL/kg) of either placebo (NaCl; n = 10) or a lipid emulsion containing 10 g of n-3 PUFA per 100 mL (n = 10). Urinary eicosanoids and isoprostanes were analyzed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Erythrocytes obtained at the different time-points from n = 10 patients (n = 5 placebo and n = 5 n-3 PUFA) were used for determination of reactive oxygen species. Intravenous n-3 PUFA emulsion administration altered eicosanoid metabolites towards decreased levels for mediators of inflammation and thrombosis, and increased levels of the endothelial function mediator prostacyclin. Furthermore, non-enzymatic metabolism was skewed towards n-3 PUFA-derived metabolites with potential anti-inflammatory and pro-resolving effects. The oxidative stress marker 15-F2t-isoprostane was significantly lower in patients receiving n-3 PUFA treatment, who also exhibited significantly decreased erythrocyte oxidative stress compared with placebo-treated patients. These findings point to additional beneficial effects of intravenous n-3 PUFA emulsion treatment through a beneficial oxylipin profile and decreased oxidative stress in COVID-19.


Asunto(s)
COVID-19 , Ácidos Grasos Omega-3 , Humanos , Emulsiones , Cromatografía Liquida , Método Simple Ciego , Espectrometría de Masas en Tándem , Eicosanoides/metabolismo , Estrés Oxidativo
18.
Camb Prism Precis Med ; 1: e15, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38550923

RESUMEN

Precision medicine has the potential to transform healthcare by moving from one-size-fits-all to personalised treatment and care. This transition has been greatly facilitated through new high-throughput sequencing technologies that can provide the unique molecular profile of each individual patient, along with the rapid development of targeted therapies directed to the Achilles heels of each disease. To implement precision medicine approaches in healthcare, many countries have adopted national strategies and initiated genomic/precision medicine initiatives to provide equal access to all citizens. In other countries, such as Sweden, this has proven more difficult due to regionally organised healthcare. Using a bottom-up approach, key stakeholders from academia, healthcare, industry and patient organisations joined forces and formed Genomic Medicine Sweden (GMS), a national infrastructure for the implementation of precision medicine across the country. To achieve this, Genomic Medicine Centres have been established to provide regionally distributed genomic services, and a national informatics infrastructure has been built to allow secure data handling and sharing. GMS has a broad scope focusing on rare diseases, cancer, pharmacogenomics, infectious diseases and complex diseases, while also providing expertise in informatics, ethical and legal issues, health economy, industry collaboration and education. In this review, we summarise our experience in building a national infrastructure for precision medicine. We also provide key examples how precision medicine already has been successfully implemented within our focus areas. Finally, we bring up challenges and opportunities associated with precision medicine implementation, the importance of international collaboration, as well as the future perspective in the field of precision medicine.

19.
Biochem Soc Trans ; 50(6): 1569-1582, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36454542

RESUMEN

Oxylipins are enzymatic and non-enzymatic metabolites of mono- or polyunsaturated fatty acids that encompass potent lipid mediators including the eicosanoids and docosanoids. Previously considered of low interest and often dismissed as 'just fat', octadecanoid oxylipins have only recently begun to be recognized as lipid mediators in humans. In the last few years, these compounds have been found to be involved in the mediation of multiple biological processes related to nociception, tissue modulation, cell proliferation, metabolic regulation, inflammation, and immune regulation. At the same time, the study of octadecanoids is hampered by a lack of standardization in the field, a paucity of analytical standards, and a lack of domain expertise. These issues have collectively limited the investigation of the biosynthesis and bioactivity of octadecanoids. Here, we present an overview of the primary enzymatic pathways for the oxidative metabolism of 18-carbon fatty acids in humans and of the current knowledge of the major biological activity of the resulting octadecanoids. We also propose a systematic nomenclature system based upon that used for the eicosanoids in order to avoid ambiguities and resolve multiple designations for the same octadecanoid. The aim of this review is to provide an initial framework for the field and to assist in its standardization as well as to increase awareness of this class of compounds in order to stimulate research into this interesting group of lipid mediators.


Asunto(s)
Eicosanoides , Oxilipinas , Humanos , Eicosanoides/metabolismo , Ácidos Grasos Insaturados/metabolismo , Ácidos Grasos , Inflamación
20.
Mol Nutr Food Res ; 66(24): e2200351, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36367234

RESUMEN

SCOPE: The fatty acid composition of plasma lipids, which is associated with biomarkers and risk of non-communicable diseases, is regulated by dietary polyunsaturated fatty acids (PUFAs) and variants of fatty acid desaturase (FADS). We investigated the interactions between dietary PUFAs and FADS1 rs174550 variant. METHODS AND RESULTS: Participants (n = 118), homozygous for FADS1 rs174550 variant (TT and CC) followed a high alpha-linolenic acid (ALA, 5 percent of energy (E-%)) or a high linoleic acid (LA, 10 E-%) diet during an 8-week randomized controlled intervention. Fatty acid composition of plasma lipids and PUFA-derived lipid mediators were quantified by gas and liquid chromatography mass spectrometry, respectively. The high-LA diet increased the concentration of plasma LA, but not its lipid mediators. The concentration of plasma arachidonic acid decreased in carriers of CC and remained unchanged in the TT genotype. The high-ALA diet increased the concentration of plasma ALA and its cytochrome P450-derived epoxides and dihydroxys, and cyclooxygenase-derived monohydroxys. Concentrations of plasma eicosapentaenoic acid and its mono- and dihydroxys increased only in TT genotype carriers. CONCLUSIONS: These findings suggest the potential for genotype-based recommendations for PUFA consumption, resulting in modulation of bioactive lipid mediators which can exert beneficial effects in maintaining health.


Asunto(s)
Polimorfismo de Nucleótido Simple , Ácido alfa-Linolénico , Humanos , Dieta , Ácido Graso Desaturasas/genética , Ácidos Grasos , Ácidos Grasos Insaturados , Genotipo , Ácido Linoleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA