Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Dev Cell ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38843836

RESUMEN

Neuronal activity is an energy-intensive process that is largely sustained by instantaneous fuel utilization and ATP synthesis. However, how neurons couple ATP synthesis rate to fuel availability is largely unknown. Here, we demonstrate that the metabolic sensor enzyme O-linked N-acetyl glucosamine (O-GlcNAc) transferase regulates neuronal activity-driven mitochondrial bioenergetics in hippocampal and cortical neurons. We show that neuronal activity upregulates O-GlcNAcylation in mitochondria. Mitochondrial O-GlcNAcylation is promoted by activity-driven glucose consumption, which allows neurons to compensate for high energy expenditure based on fuel availability. To determine the proteins that are responsible for these adjustments, we mapped the mitochondrial O-GlcNAcome of neurons. Finally, we determine that neurons fail to meet activity-driven metabolic demand when O-GlcNAcylation dynamics are prevented. Our findings suggest that O-GlcNAcylation provides a fuel-dependent feedforward control mechanism in neurons to optimize mitochondrial performance based on neuronal activity. This mechanism thereby couples neuronal metabolism to mitochondrial bioenergetics and plays a key role in sustaining energy homeostasis.

2.
bioRxiv ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38352561

RESUMEN

KvS proteins are voltage-gated potassium channel subunits that form functional channels when assembled into heterotetramers with Kv2.1 ( KCNB1 ) or Kv2.2 ( KCNB2 ). Mammals have 10 KvS subunits: Kv5.1 ( KCNF1 ), Kv6.1 ( KCNG1 ), Kv6.2 ( KCNG2 ), Kv6.3 ( KCNG3 ), Kv6.4 ( KCNG4 ), Kv8.1 ( KCNV1 ), Kv8.2 ( KCNV2 ), Kv9.1 ( KCNS1 ), Kv9.2 ( KCNS2 ), and Kv9.3 ( KCNS3 ). Electrically excitable cells broadly express channels containing Kv2 subunits and most neurons have substantial Kv2 conductance. However, whether KvS subunits contribute to these conductances has not been clear, leaving the physiological roles of KvS subunits poorly understood. Here, we identify that two potent Kv2 inhibitors, used in combination, can distinguish conductances of Kv2/KvS channels and Kv2-only channels. We find that Kv5, Kv6, Kv8, or Kv9-containing channels are resistant to the Kv2-selective pore-blocker RY785 yet remain sensitive to the Kv2-selective voltage sensor modulator guangxitoxin-1E (GxTX). Using these inhibitors in mouse superior cervical ganglion neurons, we find that little of the Kv2 conductance is carried by KvS-containing channels. In contrast, conductances consistent with KvS-containing channels predominate over Kv2-only channels in mouse and human dorsal root ganglion neurons. These results establish an approach to pharmacologically distinguish conductances of Kv2/KvS heteromers from Kv2-only channels, enabling investigation of the physiological roles of endogenous KvS subunits. These findings suggest that drugs targeting KvS subunits could modulate electrical activity of subsets of Kv2-expressing cell types.

3.
PLoS Biol ; 21(8): e3002271, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37651406

RESUMEN

Taste bud cells are constantly replaced in taste buds as old cells die and new cells migrate into the bud. The perception of taste relies on new taste bud cells integrating with existing neural circuitry, yet how these new cells connect with a taste ganglion neuron is unknown. Do taste ganglion neurons remodel to accommodate taste bud cell renewal? If so, how much of the structure of taste axons is fixed and how much remodels? Here, we measured the motility and branching of individual taste arbors (the portion of the axon innervating taste buds) in mice over time with two-photon in vivo microscopy. Terminal branches of taste arbors continuously and rapidly remodel within the taste bud. This remodeling is faster than predicted by taste bud cell renewal, with terminal branches added and lost concurrently. Surprisingly, blocking entry of new taste bud cells with chemotherapeutic agents revealed that remodeling of the terminal branches on taste arbors does not rely on the renewal of taste bud cells. Although terminal branch remodeling was fast and intrinsically controlled, no new arbors were added to taste buds, and few were lost over 100 days. Taste ganglion neurons maintain a stable number of arbors that are each capable of high-speed remodeling. We propose that terminal branch plasticity permits arbors to locate new taste bud cells, while stability of arbor number supports constancy in the degree of connectivity and function for each neuron over time.


Asunto(s)
Interneuronas , Gusto , Animales , Ratones , Neuronas , Axones , Microscopía Intravital
4.
J Neurosci ; 41(22): 4850-4866, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-33875572

RESUMEN

Taste neurons are functionally and molecularly diverse, but their morphologic diversity remains completely unexplored. Using sparse cell genetic labeling, we provide the first reconstructions of peripheral taste neurons. The branching characteristics across 96 taste neurons show surprising diversity in their complexities. Individual neurons had 1-17 separate arbors entering between one and seven taste buds, 18 of these neurons also innervated non-taste epithelia. Axon branching characteristics are similar in gustatory neurons from male and female mice. Cluster analysis separated the neurons into four groups according to branch complexity. The primary difference between clusters was the amount of the nerve fiber within the taste bud available to contact taste-transducing cells. Consistently, we found that the maximum number of taste-transducing cells capable of providing convergent input onto individual gustatory neurons varied with a range of 1-22 taste-transducing cells. Differences in branching characteristics across neurons indicate that some neurons likely receive input from a larger number of taste-transducing cells than other neurons (differential convergence). By dividing neurons into two groups based on the type of taste-transducing cell most contacted, we found that neurons contacting primarily sour transducing cells were more heavily branched than those contacting primarily sweet/bitter/umami transducing cells. This suggests that neuron morphologies may differ across functional taste quality. However, the considerable remaining variability within each group also suggests differential convergence within each functional taste quality. Each possibility has functional implications for the system.SIGNIFICANCE STATEMENT Taste neurons are considered relay cells, communicating information from taste-transducing cells to the brain, without variation in morphology. By reconstructing peripheral taste neuron morphologies for the first time, we found that some peripheral gustatory neurons are simply branched, and can receive input from only a few taste-transducing cells. Other taste neurons are heavily branched, contacting many more taste-transducing cells than simply branched neurons. Based on the type of taste-transducing cell contacted, branching characteristics are predicted to differ across (and within) quality types (sweet/bitter/umami vs sour). Therefore, functional differences between neurons likely depends on the number of taste-transducing cells providing input and not just the type of cell providing input.


Asunto(s)
Axones/ultraestructura , Imagenología Tridimensional , Papilas Gustativas/ultraestructura , Animales , Procesamiento de Imagen Asistido por Computador , Ratones , Microscopía Confocal
5.
Chem Senses ; 43(2): 117-128, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29236959

RESUMEN

Sensory processing is susceptible to decline with age. The sense of taste is, however, generally thought to be resistant to aging. We investigated how chorda-tympani nerve responses and fungiform-taste pores are affected by aging in the Sprague-Dawley rat, a model system for salt taste. First, we measured chorda-tympani nerve responses to NH4Cl and NaCl solutions in young (3-5 months old) and aged (14-15 months old) rats. Aged rats had significantly attenuated chorda-tympani responses to 0.01, 0.03, 0.1, and 0.3 M NaCl, whereas responses to NH4Cl were statistically similar between age groups. Second, we investigated if fungiform papillae, which harbor taste buds innervated by the chorda-tympani nerve, were affected by aging in "young" (4-7 months old) and "aged" ("aged1" 18 months old and "aged2" 24-28 months old) rats. Using scanning electron microscopy, we found that aging significantly reduced morphological characteristics associated with intact fungiform-taste pores (hillock, rim, pore presence, and open pore). We conclude that the structure and function of the peripheral-taste system may not be as resistant to aging as previously reported.


Asunto(s)
Envejecimiento/fisiología , Nervio de la Cuerda del Tímpano/efectos de los fármacos , Nervio de la Cuerda del Tímpano/fisiología , Cloruro de Sodio/farmacología , Papilas Gustativas/efectos de los fármacos , Gusto/fisiología , Factores de Edad , Animales , Microscopía Electrónica de Rastreo , Modelos Animales , Ratas Sprague-Dawley , Papilas Gustativas/fisiología , Papilas Gustativas/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...