Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Cardiovasc Med ; 10: 1105581, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36844730

RESUMEN

More than 50% of patients with heart failure present with heart failure with preserved ejection fraction (HFpEF), and 80% of them are overweight or obese. In this study we developed an obesity associated pre-HFpEF mouse model and showed an improvement in both systolic and diastolic early dysfunction following fecal microbiome transplant (FMT). Our study suggests that the gut microbiome-derived short-chain fatty acid butyrate plays a significant role in this improvement. Cardiac RNAseq analysis showed butyrate to significantly upregulate ppm1k gene that encodes protein phosphatase 2Cm (PP2Cm) which dephosphorylates and activates branched-chain α-keto acid dehydrogenase (BCKDH) enzyme, and in turn increases the catabolism of branched chain amino acids (BCAAs). Following both FMT and butyrate treatment, the level of inactive p-BCKDH in the heart was reduced. These findings show that gut microbiome modulation can alleviate early cardiac mechanics dysfunction seen in the development of obesity associated HFpEF.

2.
Neuroendocrinology ; 112(4): 324-337, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34034255

RESUMEN

INTRODUCTION: Mitochondria are essential organelles required for several cellular processes ranging from ATP production to cell maintenance. To provide energy, mitochondria are transported to specific cellular areas in need. Mitochondria also need to be recycled. These mechanisms rely heavily on trafficking events. While mechanisms are still unclear, hypothalamic mitochondria are linked to obesity. METHODS: We used C2 domain protein 5 (C2CD5, also called C2 domain-containing phosphoprotein [CDP138]) whole-body KO mice primary neuronal cultures and cell lines to perform electron microscopy, live cellular imaging, and oxygen consumption assay to better characterize mitochondrial alteration linked to C2CD5. RESULTS: This study identified that C2CD5 is necessary for proper mitochondrial trafficking, structure, and function in the hypothalamic neurons. We previously reported that mice lacking C2CD5 were obese and displayed reduced functional G-coupled receptor, melanocortin receptor 4 (MC4R) at the surface of hypothalamic neurons. Our data suggest that in neurons, normal MC4R endocytosis/trafficking necessities functional mitochondria. DISCUSSION: Our data show that C2CD5 is a new protein necessary for normal mitochondrial function in the hypothalamus. Its loss alters mitochondrial ultrastructure, localization, and activity within the hypothalamic neurons. C2CD5 may represent a new protein linking hypothalamic dysfunction, mitochondria, and obesity.


Asunto(s)
Dominios C2 , Hipotálamo , Animales , Hipotálamo/metabolismo , Ratones , Mitocondrias/metabolismo , Neuronas/metabolismo , Obesidad/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(42): 26482-26493, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33020290

RESUMEN

Obesity affects over 2 billion people worldwide and is accompanied by peripheral neuropathy (PN) and an associated poorer quality of life. Despite high prevalence, the molecular mechanisms underlying the painful manifestations of PN are poorly understood, and therapies are restricted to use of painkillers or other drugs that do not address the underlying disease. Studies have demonstrated that the gut microbiome is linked to metabolic health and its alteration is associated with many diseases, including obesity. Pathologic changes to the gut microbiome have recently been linked to somatosensory pain, but any relationships between gut microbiome and PN in obesity have yet to be explored. Our data show that mice fed a Western diet developed indices of PN that were attenuated by concurrent fecal microbiome transplantation (FMT). In addition, we observed changes in expression of genes involved in lipid metabolism and calcium handling in cells of the peripheral nerve system (PNS). FMT also induced changes in the immune cell populations of the PNS. There was a correlation between an increase in the circulating short-chain fatty acid butyrate and pain improvement following FMT. Additionally, butyrate modulated gene expression and immune cells in the PNS. Circulating butyrate was also negatively correlated with distal pain in 29 participants with varied body mass index. Our data suggest that the metabolite butyrate, secreted by the gut microbiome, underlies some of the effects of FMT. Targeting the gut microbiome, butyrate, and its consequences may represent novel viable approaches to prevent or relieve obesity-associated neuropathies.


Asunto(s)
Trasplante de Microbiota Fecal/métodos , Obesidad/microbiología , Enfermedades del Sistema Nervioso Periférico/terapia , Animales , Butiratos/metabolismo , Dieta Alta en Grasa , Dieta Occidental , Ácidos Grasos Volátiles/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Expresión Génica , Resistencia a la Insulina , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Microbiota , Neuralgia/metabolismo , Obesidad/fisiopatología , Sistema Nervioso Periférico/metabolismo , Sistema Nervioso Periférico/fisiología
4.
Infect Immun ; 87(5)2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30833334

RESUMEN

Gram-positive bacteria process and release small peptides, or pheromones, that act as signals for the induction of adaptive traits, including those involved in pathogenesis. One class of small signaling pheromones is the cyclic autoinducing peptides (AIPs), which regulate expression of genes that orchestrate virulence and persistence in a range of microbes, including staphylococci, listeriae, clostridia, and enterococci. In a genetic screen for Staphylococcus aureus secreted virulence factors, we identified an S. aureus mutant containing an insertion in the gene SAUSA300_1984 (mroQ), which encodes a putative membrane-embedded metalloprotease. A ΔmroQ mutant exhibited impaired induction of Toll-like receptor 2-dependent inflammatory responses from macrophages but elicited greater production of the inflammatory cytokine interleukin-1ß and was attenuated in a murine skin and soft tissue infection model. The ΔmroQ mutant phenocopies an S. aureus mutant containing a deletion of the accessory gene regulatory system (Agr), wherein both strains have significantly reduced production of secreted toxins and virulence factors but increased surface protein A abundance. The Agr system controls virulence factor gene expression in S. aureus by sensing the accumulation of AIP via the histidine kinase AgrC and the response regulator AgrA. We provide evidence to suggest that MroQ acts within the Agr pathway to facilitate the optimal processing or export of AIP for signal amplification through AgrC/A and induction of virulence factor gene expression. Mutation of MroQ active-site residues significantly reduces AIP signaling and attenuates virulence. Altogether, this work identifies a new component of the Agr quorum-sensing circuit that is critical for the production of S. aureus virulence factors.


Asunto(s)
Proteínas Bacterianas/inmunología , Proteínas de la Membrana/inmunología , Péptido Hidrolasas/inmunología , Percepción de Quorum/inmunología , Infecciones Estafilocócicas/prevención & control , Staphylococcus aureus/inmunología , Virulencia/inmunología , Regulación Bacteriana de la Expresión Génica/inmunología
5.
Immunobiology ; 224(1): 80-93, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30391100

RESUMEN

Prior work demonstrated that a splice variant of SCN5A, a voltage-gated sodium channel gene, acts as a cytoplasmic sensor for viral dsRNA in human macrophages. Expression of this channel also polarizes macrophages to an anti-inflammatory phenotype in vitro and in vivo. Here we utilized global expression analysis of splice variants to identify novel channel-dependent signaling mechanisms. Pharmacological activation of voltage-gated sodium channels in human macrophages, but not treatment with cytoplasmic poly I:C, was associated with splicing of a retained intron in transcripts of PPP1R10, a regulator of phosphatase activity and DNA repair. Microarray analysis also demonstrated expression of a novel sodium channel splice variant, human macrophage SCN10A, that contains a similar exon deletion as SCN5A. SCN10A localizes to cytoplasmic and nuclear vesicles in human macrophages. Simultaneous expression of human macrophage SCN5A and SCN10A was required to decrease expression of the retained intron and increase protein expression of PPP1R10. Channel activation also increased protein expression of the splicing factor EFTUD2, and knockdown of EFTUD2 prevented channel dependent splicing of the retained PPP1R10 intron. Knockdown of the SCN5A and SCN10A variants in human macrophages reduced the severity of dsDNA breaks induced by treatment with bleomycin and type 1 interferon. These results suggested that human macrophage SCN5A and SCN10A variants mediate an innate immune signaling pathway that limits DNA damage through increased expression of PPP1R10. The functional significance of this pathway is that it may prevent cytotoxicity during inflammatory responses.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Inflamación/metabolismo , Macrófagos/fisiología , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Canal de Sodio Activado por Voltaje NAV1.8/metabolismo , Factores de Elongación de Péptidos/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Células Cultivadas , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Técnicas de Silenciamiento del Gen , Humanos , Inmunidad Innata , Inflamación/genética , Análisis por Micromatrices , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.8/genética , Factores de Elongación de Péptidos/genética , Procesamiento Postranscripcional del ARN , Proteínas de Unión al ARN/genética , Ribonucleoproteína Nuclear Pequeña U5/genética , Transducción de Señal , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...