Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-31427291

RESUMEN

The suboptimal effectiveness of ß-lactam antibiotics against Mycobacterium tuberculosis has hindered the utility of this compound class for tuberculosis treatment. However, the results of treatment with a second-line regimen containing meropenem plus a ß-lactamase inhibitor were found to be encouraging in a case study of extensively drug-resistant tuberculosis (M. C. Payen, S. De Wit, C. Martin, R. Sergysels, et al., Int J Tuberc Lung Dis 16:558-560, 2012, https://doi.org/10.5588/ijtld.11.0414). We hypothesized that the innate resistance of M. tuberculosis to ß-lactams is mediated in part by noncanonical accessory proteins that are not considered the classic targets of ß-lactams and that small-molecule inhibitors of those accessory targets might sensitize M. tuberculosis to ß-lactams. In this study, we screened an NIH small-molecule library for the ability to sensitize M. tuberculosis to meropenem. We identified six hit compounds, belonging to either the N-arylindole or benzothiophene chemotype. Verification studies confirmed the synthetic lethality phenotype for three of the N-arylindoles and one benzothiophene derivative. The latter was demonstrated to be partially bioavailable via oral administration in mice. Structure-activity relationship studies of both structural classes identified analogs with potent antitubercular activity, alone or in combination with meropenem. Transcriptional profiling revealed that oxidoreductases, MmpL family proteins, and a 27-kDa benzoquinone methyltransferase could be the targets of the N-arylindole potentiator. In conclusion, our compound-compound synthetic lethality screening revealed novel small molecules that were capable of potentiating the action of meropenem, presumably via inhibition of the innate resistance conferred by ß-lactam accessory proteins. ß-Lactam compound-compound synthetic lethality may be an alternative approach for drug-resistant tuberculosis.


Asunto(s)
Antituberculosos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Mutaciones Letales Sintéticas/efectos de los fármacos , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , beta-Lactamas/farmacología , Animales , Antibacterianos/farmacología , Tuberculosis Extensivamente Resistente a Drogas/tratamiento farmacológico , Tuberculosis Extensivamente Resistente a Drogas/metabolismo , Femenino , Meropenem/farmacología , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana/métodos , Tuberculosis Resistente a Múltiples Medicamentos/metabolismo , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/metabolismo
2.
ChemMedChem ; 14(1): 78-82, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30376607

RESUMEN

Antibiotics with novel mechanisms of action are desperately needed to combat the increasing rates of multidrug-resistant infections. Bacterial pantothenate kinase (PanK) has emerged as a target of interest to cut off the biosynthesis of coenzyme A. Herein we report the results of an in vitro high-throughput screen of over 10 000 small molecules against Bacillus anthracis PanK, as well as a follow-up screen of hits against PanK isolated from Pseudomonas aeruginosa and Burkholderia cenocepacia. Nine hits are structurally categorized and analyzed to set the stage for future drug development.


Asunto(s)
Antibacterianos/farmacología , Bacillus anthracis/efectos de los fármacos , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Bacillus anthracis/enzimología , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad
3.
Aging (Albany NY) ; 9(1): 68-97, 2017 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-28077781

RESUMEN

A progressive loss of genome maintenance has been implicated as both a cause and consequence of aging. Here we present evidence supporting the hypothesis that an age-associated decay in genome maintenance promotes aging in Saccharomyces cerevisiae (yeast) due to an inability to sense or repair DNA damage by topoisomerase 2 (yTop2). We describe the characterization of LS1, identified in a high throughput screen for small molecules that shorten the replicative lifespan of yeast. LS1 accelerates aging without affecting proliferative growth or viability. Genetic and biochemical criteria reveal LS1 to be a weak Top2 poison. Top2 poisons induce the accumulation of covalent Top2-linked DNA double strand breaks that, if left unrepaired, lead to genome instability and death. LS1 is toxic to cells deficient in homologous recombination, suggesting that the damage it induces is normally mitigated by genome maintenance systems. The essential roles of yTop2 in proliferating cells may come with a fitness trade-off in older cells that are less able to sense or repair yTop2-mediated DNA damage. Consistent with this idea, cells live longer when yTop2 expression levels are reduced. These results identify intrinsic yTop2-mediated DNA damage as potentially manageable cause of aging.


Asunto(s)
Senescencia Celular/genética , ADN-Topoisomerasas de Tipo II/genética , Venenos/farmacología , Saccharomyces cerevisiae/metabolismo , Inhibidores de Topoisomerasa II/farmacología , Senescencia Celular/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Inestabilidad Genómica/efectos de los fármacos , Saccharomyces cerevisiae/genética
4.
PLoS One ; 11(10): e0163615, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27732613

RESUMEN

Small molecules that correct the folding defects and enhance surface localization of the F508del mutation in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) comprise an important therapeutic strategy for cystic fibrosis lung disease. However, compounds that rescue the F508del mutant protein to wild type (WT) levels have not been identified. In this report, we consider obstacles to obtaining robust and therapeutically relevant levels of F508del CFTR. For example, markedly diminished steady state amounts of F508del CFTR compared to WT CFTR are present in recombinant bronchial epithelial cell lines, even when much higher levels of mutant transcript are present. In human primary airway cells, the paucity of Band B F508del is even more pronounced, although F508del and WT mRNA concentrations are comparable. Therefore, to augment levels of "repairable" F508del CFTR and identify small molecules that then correct this pool, we developed compound library screening protocols based on automated protein detection. First, cell-based imaging measurements were used to semi-quantitatively estimate distribution of F508del CFTR by high content analysis of two-dimensional images. We evaluated ~2,000 known bioactive compounds from the NIH Roadmap Molecular Libraries Small Molecule Repository in a pilot screen and identified agents that increase the F508del protein pool. Second, we analyzed ~10,000 compounds representing diverse chemical scaffolds for effects on total CFTR expression using a multi-plate fluorescence protocol and describe compounds that promote F508del maturation. Together, our findings demonstrate proof of principle that agents identified in this fashion can augment the level of endoplasmic reticulum (ER) resident "Band B" F508del CFTR suitable for pharmacologic correction. As further evidence in support of this strategy, PYR-41-a compound that inhibits the E1 ubiquitin activating enzyme-was shown to synergistically enhance F508del rescue by C18, a small molecule corrector. Our combined results indicate that increasing the levels of ER-localized CFTR available for repair provides a novel route to correct F508del CFTR.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fibrosis Quística/patología , Retículo Endoplásmico/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Alelos , Benzoatos/química , Benzoatos/farmacología , Células Cultivadas , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Furanos/química , Furanos/farmacología , Eliminación de Gen , Células HEK293 , Células HeLa , Ensayos Analíticos de Alto Rendimiento , Humanos , Ácidos Hidroxámicos/química , Ácidos Hidroxámicos/farmacología , Microscopía Fluorescente , Pliegue de Proteína , Estructura Terciaria de Proteína , Pirazoles/química , Pirazoles/farmacología , ARN Mensajero/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Ubiquitinación/efectos de los fármacos , Vorinostat
5.
J Biol Chem ; 291(46): 24188-24199, 2016 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-27679486

RESUMEN

The enzyme cytochrome c oxidase (CcO) or complex IV (EC 1.9.3.1) is a large transmembrane protein complex that serves as the last enzyme in the respiratory electron transport chain of eukaryotic mitochondria. CcO promotes the switch from glycolytic to oxidative phosphorylation (OXPHOS) metabolism and has been associated with increased self-renewal characteristics in gliomas. Increased CcO activity in tumors has been associated with tumor progression after chemotherapy failure, and patients with primary glioblastoma multiforme and high tumor CcO activity have worse clinical outcomes than those with low tumor CcO activity. Therefore, CcO is an attractive target for cancer therapy. We report here the characterization of a CcO inhibitor (ADDA 5) that was identified using a high throughput screening paradigm. ADDA 5 demonstrated specificity for CcO, with no inhibition of other mitochondrial complexes or other relevant enzymes, and biochemical characterization showed that this compound is a non-competitive inhibitor of cytochrome c When tested in cellular assays, ADDA 5 dose-dependently inhibited the proliferation of chemosensitive and chemoresistant glioma cells but did not display toxicity against non-cancer cells. Furthermore, treatment with ADDA 5 led to significant inhibition of tumor growth in flank xenograft mouse models. Importantly, ADDA 5 inhibited CcO activity and blocked cell proliferation and neurosphere formation in cultures of glioma stem cells, the cells implicated in tumor recurrence and resistance to therapy in patients with glioblastoma. In summary, we have identified ADDA 5 as a lead CcO inhibitor for further optimization as a novel approach for the treatment of glioblastoma and related cancers.


Asunto(s)
Resistencia a Antineoplásicos/efectos de los fármacos , Complejo IV de Transporte de Electrones/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Glioma , Proteínas de Neoplasias/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Citocromos c/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Glioma/tratamiento farmacológico , Glioma/enzimología , Humanos , Ratones , Proteínas de Neoplasias/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Methods Mol Biol ; 1439: 181-95, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27316996

RESUMEN

High-throughput screening is a valuable way to identify hit compounds that combined with a robust medicinal chemistry program could lead to the identification of new antibiotics. Here, we discuss our method for screening large compound libraries with virulent Mycobacterium tuberculosis, possibly one of the more difficult bacteria to use because of its slow growth and assignment to Biosafety Level-3 by the CDC and NIH. The principles illuminated here, however, are relevant to the execution of most bacteria high-throughput screens.


Asunto(s)
Antituberculosos/farmacología , Ensayos Analíticos de Alto Rendimiento/métodos , Pruebas de Sensibilidad Microbiana/métodos , Mycobacterium tuberculosis/efectos de los fármacos , Tuberculosis/tratamiento farmacológico , Animales , Técnicas de Cultivo de Célula/métodos , Chlorocebus aethiops , Humanos , Mycobacterium tuberculosis/crecimiento & desarrollo , Bibliotecas de Moléculas Pequeñas/farmacología , Tuberculosis/microbiología , Células Vero
7.
Am J Respir Crit Care Med ; 194(9): 1092-1103, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27104944

RESUMEN

RATIONALE: Premature termination codons (PTCs) in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause cystic fibrosis (CF). Several agents are known to suppress PTCs but are poorly efficacious or toxic. OBJECTIVES: To determine whether there are clinically available agents that elicit translational readthrough and improve CFTR function sufficient to confer therapeutic benefit to patients with CF with PTCs. METHODS: Two independent screens, firefly luciferase and CFTR-mediated transepithelial chloride conductance assay, were performed on a library of 1,600 clinically approved compounds using fisher rat thyroid cells stably transfected with stop codons. Select agents were further evaluated using secondary screening assays including short circuit current analysis on primary cells from patients with CF. In addition, the effect of CFTR modulators (ivacaftor) was tested in combination with the most efficacious agents. MEASUREMENTS AND MAIN RESULTS: From the primary screen, 48 agents were selected as potentially active. Following confirmatory tests in the transepithelial chloride conductance assay and prioritizing agents based on favorable pharmacologic properties, eight agents were advanced for secondary screening. Ivacaftor significantly increased short circuit current following forskolin stimulation in cells treated with pyranoradine tetraphosphate, potassium p-aminobenzoate, and escin as compared with vehicle control. Escin, an herbal agent, consistently induced readthrough activity as demonstrated by enhanced CFTR expression and function in vitro. CONCLUSIONS: Clinically approved drugs identified as potential readthrough agents, in combination with ivacaftor, may induce nonsense suppression to restore therapeutic levels of CFTR function. One or more agents may be suitable to advance to human testing.


Asunto(s)
Codón sin Sentido/efectos de los fármacos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/tratamiento farmacológico , Descubrimiento de Drogas/métodos , Animales , Línea Celular , Codón sin Sentido/genética , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/efectos de los fármacos , Evaluación Preclínica de Medicamentos/métodos , Humanos , Luciferasas/metabolismo , Ratas Endogámicas F344 , Reacción en Cadena en Tiempo Real de la Polimerasa
8.
Biochem J ; 473(8): 1027-35, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26846349

RESUMEN

Historically, drugs used in the treatment of cancers also tend to cause damage to healthy cells while affecting cancer cells. Therefore, the identification of novel agents that act specifically against cancer cells remains a high priority in the search for new therapies. In contrast with normal cells, most cancer cells contain multiple centrosomes which are associated with genome instability and tumorigenesis. Cancer cells can avoid multipolar mitosis, which can cause cell death, by clustering the extra centrosomes into two spindle poles, thereby enabling bipolar division. Kinesin-like protein KIFC1 plays a critical role in centrosome clustering in cancer cells, but is not essential for normal cells. Therefore, targeting KIFC1 may provide novel insight into selective killing of cancer cells. In the present study, we identified a small-molecule KIFC1 inhibitor, SR31527, which inhibited microtubule (MT)-stimulated KIFC1 ATPase activity with an IC50 value of 6.6 µM. By using bio layer interferometry technology, we further demonstrated that SR31527 bound directly to KIFC1 with high affinity (Kd=25.4 nM). Our results from computational modelling and saturation-transfer difference (STD)-NMR experiments suggest that SR31527 bound to a novel allosteric site of KIFC1 that appears suitable for developing selective inhibitors of KIFC1. Importantly, SR31527 prevented bipolar clustering of extra centrosomes in triple negative breast cancer (TNBC) cells and significantly reduced TNBC cell colony formation and viability, but was less toxic to normal fibroblasts. Therefore, SR31527 provides a valuable tool for studying the biological function of KIFC1 and serves as a potential lead for the development of novel therapeutic agents for breast cancer treatment.


Asunto(s)
Descubrimiento de Drogas , Cinesinas/antagonistas & inhibidores , Cinesinas/metabolismo , Tiadiazoles/química , Tiadiazoles/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas/métodos , Humanos , Cinesinas/química , Unión Proteica/fisiología , Estructura Secundaria de Proteína , Tiadiazoles/farmacología
9.
J Lab Autom ; 21(1): 198-203, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26663785

RESUMEN

The development of acoustic droplet ejection (ADE) technology has resulted in many positive changes associated with the operations in a high-throughput screening (HTS) laboratory. Originally, this liquid transfer technology was used to simply transfer DMSO solutions of primarily compounds. With the introduction of Labcyte's Echo 555, which has aqueous dispense capability, the application of this technology has been expanded beyond its original use. This includes the transfer of many biological reagents solubilized in aqueous buffers, including siRNAs. The Echo 555 is ideal for siRNA dispensing because it is accurate at low volumes and a step-down dilution is not necessary. The potential for liquid carryover and cross-contamination is eliminated, as no tips are needed. Herein, we describe the siRNA screening platform at Southern Research's HTS Center using the ADE technology. With this technology, an siRNA library can be dispensed weeks or even months in advance of the assay itself. The protocol has been optimized to achieve assay parameters comparable to small-molecule screening parameters, and exceeding the norm reported for genomewide siRNA screens.


Asunto(s)
Tecnología Biomédica/métodos , Estudios de Asociación Genética/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Interferencia de ARN , Acústica , Soluciones
10.
J Lab Autom ; 21(1): 188-97, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26663786

RESUMEN

When acoustic droplet ejection technology was first introduced for high-throughput applications, it was used primarily for dispensing compounds dissolved in DMSO. The high precision and accuracy achieved for low-volume transfers in this application were noted by those working outside of the compound management area, and interest was generated in expanding the scope of the technology to include other liquid types. Later-generation instruments included calibrations for several aqueous buffers that were applicable to the life sciences. The High Throughput Screening Center at Southern Research has made use of this range of liquid calibrations for the Infectious Disease Program. The original calibration for DMSO has allowed the preparation of assay-ready plates that can be sent to remote locations. This process was used as part of the collaboration between Southern Research and Galveston National Laboratory, University of Texas Medical Branch, to develop high-throughput screening for biological safety level 4 containment and to provide compounds for two pilot screens that were run there with BSL-4-level pathogens. The aqueous calibrations have been instrumental in miniaturizing assays used for infectious disease, such as qPCR, tissue culture infectious dose 50, and bacterial motility, to make them compatible with HTS operations.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Técnicas Microbiológicas/métodos , Manejo de Especímenes/métodos , Acústica , Contención de Riesgos Biológicos/métodos , Soluciones , Texas
11.
Cell ; 161(6): 1252-65, 2015 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-26046436

RESUMEN

Small-molecule probes can illuminate biological processes and aid in the assessment of emerging therapeutic targets by perturbing biological systems in a manner distinct from other experimental approaches. Despite the tremendous promise of chemical tools for investigating biology and disease, small-molecule probes were unavailable for most targets and pathways as recently as a decade ago. In 2005, the NIH launched the decade-long Molecular Libraries Program with the intent of innovating in and broadening access to small-molecule science. This Perspective describes how novel small-molecule probes identified through the program are enabling the exploration of biological pathways and therapeutic hypotheses not otherwise testable. These experiences illustrate how small-molecule probes can help bridge the chasm between biological research and the development of medicines but also highlight the need to innovate the science of therapeutic discovery.


Asunto(s)
Descubrimiento de Drogas , Bibliotecas de Moléculas Pequeñas , Animales , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Ensayos Analíticos de Alto Rendimiento , Humanos , National Institutes of Health (U.S.) , Estados Unidos
12.
J Biol Chem ; 290(16): 10504-17, 2015 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-25724652

RESUMEN

APOBEC3G (A3G) is a cellular cytidine deaminase that restricts HIV-1 replication by inducing G-to-A hypermutation in viral DNA and by deamination-independent mechanisms. HIV-1 Vif binds to A3G, resulting in its degradation via the 26 S proteasome. Therefore, this interaction represents a potential therapeutic target. To identify compounds that inhibit interaction between A3G and HIV-1 Vif in a high throughput format, we developed a homogeneous time-resolved fluorescence resonance energy transfer assay. A 307,520 compound library from the NIH Molecular Libraries Small Molecule Repository was screened. Secondary screens to evaluate dose-response performance and off-target effects, cell-based assays to identify compounds that attenuate Vif-dependent degradation of A3G, and assays testing antiviral activity in peripheral blood mononuclear cells and T cells were employed. One compound, N.41, showed potent antiviral activity in A3G(+) but not in A3G(-) T cells and had an IC50 as low as 8.4 µM and a TC50 of >100 µM when tested against HIV-1Ba-L replication in peripheral blood mononuclear cells. N.41 inhibited the Vif-A3G interaction and increased cellular A3G levels and incorporation of A3G into virions, thereby attenuating virus infectivity in a Vif-dependent manner. N.41 activity was also species- and Vif-dependent. Preliminary structure-activity relationship studies suggest that a hydroxyl moiety located at a phenylamino group is critical for N.41 anti-HIV activity and identified N.41 analogs with better potency (IC50 as low as 4.2 µM). These findings identify a new lead compound that attenuates HIV replication by liberating A3G from Vif regulation and increasing its innate antiviral activity.


Asunto(s)
Fármacos Anti-VIH/farmacología , Citidina Desaminasa/genética , VIH-1/efectos de los fármacos , Leucocitos Mononucleares/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Linfocitos T/efectos de los fármacos , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/genética , Desaminasa APOBEC-3G , Fármacos Anti-VIH/química , Bioensayo , Línea Celular , Citidina Desaminasa/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Regulación de la Expresión Génica , Células HEK293 , VIH-1/genética , VIH-1/metabolismo , Interacciones Huésped-Patógeno , Humanos , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/virología , Cultivo Primario de Células , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Transducción de Señal , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad , Linfocitos T/metabolismo , Linfocitos T/virología , Replicación Viral/efectos de los fármacos , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/antagonistas & inhibidores , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/metabolismo
13.
Assay Drug Dev Technol ; 13(1): 44-54, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25710545

RESUMEN

High-throughput screening (HTS) has been integrated into the drug discovery process, and multiple assay formats have been widely used in many different disease areas but with limited focus on infectious agents. In recent years, there has been an increase in the number of HTS campaigns using infectious wild-type pathogens rather than surrogates or biochemical pathogen-derived targets. Concurrently, enhanced emerging pathogen surveillance and increased human mobility have resulted in an increase in the emergence and dissemination of infectious human pathogens with serious public health, economic, and social implications at global levels. Adapting the HTS drug discovery process to biocontainment laboratories to develop new drugs for these previously uncharacterized and highly pathogenic agents is now feasible, but HTS at higher biosafety levels (BSL) presents a number of unique challenges. HTS has been conducted with multiple bacterial and viral pathogens at both BSL-2 and BSL-3, and pilot screens have recently been extended to BSL-4 environments for both Nipah and Ebola viruses. These recent successful efforts demonstrate that HTS can be safely conducted at the highest levels of biological containment. This review outlines the specific issues that must be considered in the execution of an HTS drug discovery program for high-containment pathogens. We present an overview of the requirements for HTS in high-level biocontainment laboratories.


Asunto(s)
Bioensayo/instrumentación , Contención de Riesgos Biológicos/instrumentación , Evaluación Preclínica de Medicamentos/instrumentación , Ensayos Analíticos de Alto Rendimiento/instrumentación , Laboratorios , Tecnología Farmacéutica/instrumentación , Diseño de Fármacos , Diseño de Equipo , Análisis de Falla de Equipo , Robótica/instrumentación , Manejo de Especímenes/instrumentación
14.
J Med Chem ; 57(24): 10314-28, 2014 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-25399509

RESUMEN

A quinazolinedione-derived screening hit 2 was discovered with cellular antiviral activity against respiratory syncytial virus (CPE EC50 = 2.1 µM), moderate efficacy in reducing viral progeny (4.2 log at 10 µM), and marginal cytotoxic liability (selectivity index, SI ∼ 24). Scaffold optimization delivered analogs with improved potency and selectivity profiles. Most notable were compounds 15 and 19 (EC50 = 300-500 nM, CC50 > 50 µM, SI > 100), which significantly reduced viral titer (>400,000-fold), and several analogs were shown to block the activity of the RNA-dependent RNA-polymerase complex of RSV.


Asunto(s)
Antivirales/farmacología , Benzamidas/farmacología , Proliferación Celular/efectos de los fármacos , Quinazolinonas/farmacología , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Virus Sincitiales Respiratorios/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Antivirales/síntesis química , Benzamidas/síntesis química , Diseño de Fármacos , Células Hep G2 , Humanos , Concentración 50 Inhibidora , Modelos Moleculares , Estructura Molecular , Quinazolinonas/síntesis química , Quinazolinonas/química , ARN Polimerasa Dependiente del ARN/metabolismo , Infecciones por Virus Sincitial Respiratorio/virología , Relación Estructura-Actividad
15.
J Biol Chem ; 289(47): 32937-51, 2014 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-25228699

RESUMEN

Pathogenic mutations in the LRRK2 gene can cause late-onset Parkinson disease. The most common mutation, G2019S, resides in the kinase domain and enhances activity. LRRK2 possesses the unique property of cis-autophosphorylation of its own GTPase domain. Because high-resolution structures of the human LRRK2 kinase domain are not available, we used novel high-throughput assays that measured both cis-autophosphorylation and trans-peptide phosphorylation to probe the ATP-binding pocket. We disclose hundreds of commercially available activity-selective LRRK2 kinase inhibitors. Some compounds inhibit cis-autophosphorylation more strongly than trans-peptide phosphorylation, and other compounds inhibit G2019S-LRRK2 more strongly than WT-LRRK2. Through exploitation of structure-activity relationships revealed through high-throughput analyses, we identified a useful probe inhibitor, SRI-29132 (11). SRI-29132 is exquisitely selective for LRRK2 kinase activity and is effective in attenuating proinflammatory responses in macrophages and rescuing neurite retraction phenotypes in neurons. Furthermore, the compound demonstrates excellent potency, is highly blood-brain barrier-permeant, but suffers from rapid first-pass metabolism. Despite the observed selectivity of SRI-29132, docking models highlighted critical interactions with residues conserved in many protein kinases, implying a unique structural configuration for the LRRK2 ATP-binding pocket. Although the human LRRK2 kinase domain is unstable and insoluble, we demonstrate that the LRRK2 homolog from ameba can be mutated to approximate some aspects of the human LRRK2 ATP-binding pocket. Our results provide a rich resource for LRRK2 small molecule inhibitor development. More broadly, our results provide a precedent for the functional interrogation of ATP-binding pockets when traditional approaches to ascertain structure prove difficult.


Asunto(s)
Adenosina Trifosfato/química , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Biocatálisis/efectos de los fármacos , Western Blotting , Línea Celular Tumoral , Células Cultivadas , Células Hep G2 , Humanos , Cinética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Mutación , Fosforilación/efectos de los fármacos , Unión Proteica , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/genética , Piridazinas/química , Piridazinas/metabolismo , Piridazinas/farmacología , Homología de Secuencia de Aminoácido , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Estructura-Actividad , Triazoles/química , Triazoles/metabolismo , Triazoles/farmacología
16.
J Med Chem ; 57(20): 8608-21, 2014 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-25244572

RESUMEN

Venezuelan equine encephalitis virus (VEEV) is an emerging pathogenic alphavirus that can cause significant disease in humans. Given the absence of therapeutic options available and the significance of VEEV as a weaponized agent, an optimization effort was initiated around a quinazolinone screening hit 1 with promising cellular antiviral activity (EC50 = 0.8 µM), limited cytotoxic liability (CC50 > 50 µM), and modest in vitro efficacy in reducing viral progeny (63-fold at 5 µM). Scaffold optimization revealed a novel rearrangement affording amidines, specifically compound 45, which was found to potently inhibit several VEEV strains in the low nanomolar range without cytotoxicity (EC50 = 0.02-0.04 µM, CC50 > 50 µM) while limiting in vitro viral replication (EC90 = 0.17 µM). Brain exposure was observed in mice with 45. Significant protection was observed in VEEV-infected mice at 5 mg kg(-1) day(-1) and viral replication appeared to be inhibited through interference of viral nonstructural proteins.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Benzamidas/farmacología , Virus de la Encefalitis Equina Venezolana/efectos de los fármacos , Piperazinas/farmacología , Animales , Benzamidas/química , Evaluación Preclínica de Medicamentos/métodos , Encefalomielitis Equina Venezolana/tratamiento farmacológico , Compuestos Heterocíclicos con 2 Anillos/química , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Piperazinas/química , Quinazolinonas/química , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Estructura-Actividad , Replicación Viral/efectos de los fármacos
17.
J Biomol Screen ; 19(10): 1338-49, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25156556

RESUMEN

Alzheimer disease (AD) is the most common neurodegenerative disease, and with Americans' increasing longevity, it is becoming an epidemic. There are currently no effective treatments for this disorder. Abnormalities of Tau track more closely with cognitive decline than the most studied therapeutic target in AD, amyloid-ß, but the optimal strategy for targeting Tau has not yet been identified. On the basis of considerable preclinical data from AD models, we hypothesize that interactions between Tau and the Src-family tyrosine kinase, Fyn, are pathogenic in AD. Genetically reducing either Tau or Fyn is protective in AD mouse models, and a dominant negative fragment of Tau that alters Fyn localization is also protective. Here, we describe a new AlphaScreen assay and a live-cell bioluminescence resonance energy transfer (BRET) assay using a novel BRET pair for quantifying the Tau-Fyn interaction. We used these assays to map the binding site on Tau for Fyn to the fifth and sixth PXXP motifs to show that AD-associated phosphorylation at microtubule affinity regulating kinase sites increases the affinity of the Tau-Fyn interaction and to identify Tau-Fyn interaction inhibitors by high-throughput screening. This screen has identified a variety of chemically tractable hits, suggesting that the Tau-Fyn interaction may represent a good drug target for AD.


Asunto(s)
Transferencia de Energía por Resonancia de Bioluminiscencia/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Proteínas tau/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sitios de Unión , Humanos , Datos de Secuencia Molecular , Fosforilación , Dominios y Motivos de Interacción de Proteínas , Proteínas Proto-Oncogénicas c-fyn/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Dominios Homologos src , Proteínas tau/genética
18.
PLoS One ; 9(7): e96054, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24983234

RESUMEN

Uropathogenic Escherichia coli (UPEC) is the leading cause of community-acquired urinary tract infections (UTIs), with over 100 million UTIs occurring annually throughout the world. Increasing antimicrobial resistance among UPEC limits ambulatory care options, delays effective treatment, and may increase overall morbidity and mortality from complications such as urosepsis. The polysaccharide capsules of UPEC are an attractive target a therapeutic, based on their importance in defense against the host immune responses; however, the large number of antigenic types has limited their incorporation into vaccine development. The objective of this study was to identify small-molecule inhibitors of UPEC capsule biogenesis. A large-scale screening effort entailing 338,740 compounds was conducted in a cell-based, phenotypic screen for inhibition of capsule biogenesis in UPEC. The primary and concentration-response assays yielded 29 putative inhibitors of capsule biogenesis, of which 6 were selected for further studies. Secondary confirmatory assays identified two highly active agents, named DU003 and DU011, with 50% inhibitory concentrations of 1.0 µM and 0.69 µM, respectively. Confirmatory assays for capsular antigen and biochemical measurement of capsular sugars verified the inhibitory action of both compounds and demonstrated minimal toxicity and off-target effects. Serum sensitivity assays demonstrated that both compounds produced significant bacterial death upon exposure to active human serum. DU011 administration in mice provided near complete protection against a lethal systemic infection with the prototypic UPEC K1 isolate UTI89. This work has provided a conceptually new class of molecules to combat UPEC infection, and future studies will establish the molecular basis for their action along with efficacy in UTI and other UPEC infections.


Asunto(s)
Antibacterianos , Cápsulas Bacterianas/metabolismo , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones Urinarias/tratamiento farmacológico , Escherichia coli Uropatógena/metabolismo , Animales , Antibacterianos/química , Antibacterianos/farmacología , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Infecciones por Escherichia coli/patología , Femenino , Humanos , Ratones , Infecciones Urinarias/patología
19.
PLoS Pathog ; 10(6): e1004213, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24967809

RESUMEN

Alphaviruses present serious health threats as emerging and re-emerging viruses. Venezuelan equine encephalitis virus (VEEV), a New World alphavirus, can cause encephalitis in humans and horses, but there are no therapeutics for treatment. To date, compounds reported as anti-VEEV or anti-alphavirus inhibitors have shown moderate activity. To discover new classes of anti-VEEV inhibitors with novel viral targets, we used a high-throughput screen based on the measurement of cell protection from live VEEV TC-83-induced cytopathic effect to screen a 340,000 compound library. Of those, we identified five novel anti-VEEV compounds and chose a quinazolinone compound, CID15997213 (IC50 = 0.84 µM), for further characterization. The antiviral effect of CID15997213 was alphavirus-specific, inhibiting VEEV and Western equine encephalitis virus, but not Eastern equine encephalitis virus. In vitro assays confirmed inhibition of viral RNA, protein, and progeny synthesis. No antiviral activity was detected against a select group of RNA viruses. We found mutations conferring the resistance to the compound in the N-terminal domain of nsP2 and confirmed the target residues using a reverse genetic approach. Time of addition studies showed that the compound inhibits the middle stage of replication when viral genome replication is most active. In mice, the compound showed complete protection from lethal VEEV disease at 50 mg/kg/day. Collectively, these results reveal a potent anti-VEEV compound that uniquely targets the viral nsP2 N-terminal domain. While the function of nsP2 has yet to be characterized, our studies suggest that the protein might play a critical role in viral replication, and further, may represent an innovative opportunity to develop therapeutic interventions for alphavirus infection.


Asunto(s)
Antivirales/farmacología , Virus de la Encefalitis Equina Venezolana/efectos de los fármacos , Encefalomielitis Equina Venezolana/tratamiento farmacológico , Quinazolinonas/farmacología , Animales , Línea Celular , Chlorocebus aethiops , Cricetinae , Modelos Animales de Enfermedad , Farmacorresistencia Viral/genética , Virus de la Encefalitis Equina Venezolana/genética , Encefalomielitis Equina Venezolana/virología , Ensayos Analíticos de Alto Rendimiento , Ratones , Ratones Endogámicos C3H , Especificidad de la Especie , Relación Estructura-Actividad , Células Vero , Ensayo de Placa Viral , Replicación Viral/efectos de los fármacos
20.
Assay Drug Dev Technol ; 12(3): 155-61, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24735442

RESUMEN

Nipah virus is a biosafety level 4 (BSL-4) pathogen that causes severe respiratory illness and encephalitis in humans. To identify novel small molecules that target Nipah virus replication as potential therapeutics, Southern Research Institute and Galveston National Laboratory jointly developed an automated high-throughput screening platform that is capable of testing 10,000 compounds per day within BSL-4 biocontainment. Using this platform, we screened a 10,080-compound library using a cell-based, high-throughput screen for compounds that inhibited the virus-induced cytopathic effect. From this pilot effort, 23 compounds were identified with EC50 values ranging from 3.9 to 20.0 µM and selectivities >10. Three sulfonamide compounds with EC50 values <12 µM were further characterized for their point of intervention in the viral replication cycle and for broad antiviral efficacy. Development of HTS capability under BSL-4 containment changes the paradigm for drug discovery for highly pathogenic agents because this platform can be readily modified to identify prophylactic and postexposure therapeutic candidates against other BSL-4 pathogens, particularly Ebola, Marburg, and Lassa viruses.


Asunto(s)
Antivirales/administración & dosificación , Antivirales/química , Evaluación Preclínica de Medicamentos/instrumentación , Ensayos Analíticos de Alto Rendimiento/instrumentación , Virus Nipah/efectos de los fármacos , Virus Nipah/fisiología , Sulfonamidas/antagonistas & inhibidores , Replicación Viral/efectos de los fármacos , Animales , Chlorocebus aethiops , Contención de Riesgos Biológicos/instrumentación , Relación Dosis-Respuesta a Droga , Diseño de Equipo , Análisis de Falla de Equipo , Robótica/instrumentación , Células Vero , Replicación Viral/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA