Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Food Microbiol ; 417: 110715, 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38657420

RESUMEN

Head blight (HB) of oat (Avena sativa) has caused significant production losses in oats growing areas of western China. A total of 314 isolates, associated with HB were collected from the major oat cultivating areas of Gansu, Qinghai, and Yunnan Provinces in western China. Based on morphological characters, the isolates were initially classified into three genera, as differentiation to species was a bit difficult. Taxonomic analysis of these isolates based on muti-gene phylogenetic analyses (ITS, TEF1, TUB2, and RPB2) revealed four known Fusarium species, F. proliferatum, F. avenaceum, F. poae, and F. sibiricum, and one Acremonium specie (A. sclerotigenum). In addition, a new genus Neonalanthamala gen. nov., similar to genus Nalanthamala was introduced herein with a new combination, Neonalanthamala graminearum sp. nov., to accommodate the HB fungus. The molecular clock analyses estimated the divergence time of the Neonalanthamala and Nalanthamala based on a dataset (ITS, TUB2, RPB2), and we recognized the mean stem ages of the two genera are 98.95 Mya, which showed that they evolved from the same ancestor. N. graminearum was the most prevalent throughout the surveyed provinces. Pathogenicity test was carried out by using two different methods: seed inoculation and head inoculation. Results showed that F. sibiricum isolates were the most aggressive on the seed and head. A. sclerotigenum isolates were not pathogenic to seeds, and were developed less symptoms to the head compared to other species. Data analyses showed that the correlation of the germination potential, germination index, and dry weight of seed inoculation and disease index of plant inoculation had a highly significant negative correlation (P < 0.001). These results showed that the development of HB might be predicted by seed tests for this species. A. sclerotigenum and N. graminearum causing HB are being firstly reported on oat in the world. Similarly, F. proliferatum, F. avenaceum, F. poae and F. sibiricum causing oat HB are firstly reported in China.


Asunto(s)
Avena , Fusarium , Filogenia , Enfermedades de las Plantas , Avena/microbiología , Enfermedades de las Plantas/microbiología , China , Fusarium/genética , Fusarium/clasificación , Fusarium/aislamiento & purificación , Fusarium/patogenicidad , ADN de Hongos/genética , Acremonium/genética , Acremonium/clasificación , Acremonium/aislamiento & purificación
2.
Microbiol Spectr ; 12(4): e0257423, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38488391

RESUMEN

The clavicipitaceous fungus Epichloë gansuensis forms symbiotic associations with drunken horse grass (Achnatherum inebrians), providing biotic and abiotic stress protection to its host. However, it is unclear how E. gansuensis affects the assembly of host plant-associated bacterial communities after ammonium nitrogen (NH4+-N) treatment. We examined the shoot- and root-associated bacterial microbiota and root metabolites of A. inebrians when infected (I) or uninfected (F) with E. gansuensis endophyte. The results showed more pronounced NH4+-N-induced microbial and metabolic changes in the endophyte-infected plants compared to the endophyte-free plants. E. gansuensis significantly altered bacterial community composition and ß-diversity in shoots and roots and increased bacterial α-diversity under NH4+-N treatment. The relative abundance of 117 and 157 root metabolites significantly changed with E. gansuensis infection under water and NH4+-N treatment compared to endophyte-free plants. Root bacterial community composition was significantly related to the abundance of the top 30 metabolites [variable importance in the projection (VIP) > 2 and VIP > 3] contributing to differences between I and F plants, especially alkaloids. The correlation network between root microbiome and metabolites was complex. Microorganisms in the Proteobacteria and Firmicutes phyla were significantly associated with the R00693 metabolic reaction of cysteine and methionine metabolism. Co-metabolism network analysis revealed common metabolites between host plants and microorganisms.IMPORTANCEOur results suggest that the effect of endophyte infection is sensitive to nitrogen availability. Endophyte symbiosis altered the composition of shoot and root bacterial communities, increasing bacterial diversity. There was also a change in the class and relative abundance of metabolites. We found a complex co-occurrence network between root microorganisms and metabolites, with some metabolites shared between the host plant and its microbiome. The precise ecological function of the metabolites produced in response to endophyte infection remains unknown. However, some of these compounds may facilitate plant-microbe symbiosis by increasing the uptake of beneficial soil bacteria into plant tissues. Overall, these findings advance our understanding of the interactions between the microbiome, metabolome, and endophyte symbiosis in grasses. The results provide critical insight into the mechanisms by which the plant microbiome responds to nutrient stress in the presence of fungal endophytes.


Asunto(s)
Endófitos , Epichloe , Endófitos/fisiología , Epichloe/metabolismo , Nitrógeno/metabolismo , Poaceae/metabolismo , Poaceae/microbiología , Simbiosis , Bacterias
3.
Microorganisms ; 11(4)2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37110341

RESUMEN

Plants harbour various microbial communities, including bacteria, fungi, actinomycetes, and nematodes, inside or outside their tissues [...].

4.
Microorganisms ; 11(3)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36985213

RESUMEN

Phragmites australis is a cosmopolitan grass species common in wetland ecosystems across the world. In much of North America, the non-native subspecies of Phragmites threatens wetland biodiversity, hinders recreation, and is a persistent problem for natural resource managers. In other parts of the world, populations are in decline, as Reed Die-Back Syndrome (RDBS) plagues some Phragmites stands in its native range. RDBS is defined by a clumped growth form, stunted root and shoot growth, premature senescence, and shoot death. RDBS has been associated with a build-up of short-chain fatty acids (SCFAs) and altered bacterial and oomycete communities in soils, but the exact causes are unknown. To control invasive Phragmites populations, we sought to develop treatments that mimic the conditions of RDBS. We applied various SCFA treatments at various concentrations to mesocosm soils growing either Phragmites or native wetland plants. We found that the high-concentration SCFA treatments applied weekly induced strong significant declines in above- and belowground biomass of Phragmites. Declines were significant but slightly weaker in native species. In addition, soil bacterial abundance increased, diversity decreased, and bacterial community composition significantly differed following treatments, such that treated pots maintained a higher relative abundance of Pseudomonadaceae and fewer Acidobacteriaceae than untreated pots. Our results suggest that application of SCFAs to Phragmites can lead to stunted plants and altered soil bacterial communities similar to populations affected by RDBS. However, the lack of species-specificity and intensive application rate may not make this treatment ideal as a widespread management tool.

5.
Plants (Basel) ; 12(2)2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36679113

RESUMEN

In this literature review, we discuss the various functions of beneficial plant bacteria in improving plant nutrition, the defense against biotic and abiotic stress, and hormonal regulation. We also review the recent research on rhizophagy, a nutrient scavenging mechanism in which bacteria enter and exit root cells on a cyclical basis. These concepts are covered in the contexts of soil agriculture and controlled environment agriculture, and they are also used in vertical farming systems. Vertical farming-its advantages and disadvantages over soil agriculture, and the various climatic factors in controlled environment agriculture-is also discussed in relation to plant-bacterial relationships. The different factors under grower control, such as choice of substrate, oxygenation rates, temperature, light, and CO2 supplementation, may influence plant-bacterial interactions in unintended ways. Understanding the specific effects of these environmental factors may inform the best cultural practices and further elucidate the mechanisms by which beneficial bacteria promote plant growth.

6.
Plant Dis ; 107(3): 758-770, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35939752

RESUMEN

Pyrenophora is a genus of pathogens that cause leaf damage and a common seedborne fungus of Italian ryegrass (Lolium multiflorum Lam.). To elucidate the main seedborne Pyrenophora species, 36 seed samples of Italian ryegrass were collected; in total, 113 strains, representing 12.3% of all isolated strains (921), were identified as Pyrenophora species using the identity of ITS sequences in NCBI and the similarity of morphological characteristics. P. dictyoides (97) was the most frequent species. By pure culture technique, 24 representative pure isolates were obtained for further study. Based on DNA analysis of multiple loci (ITS, LSU, GPDH, CHS-1, and RPB1) and morphological characters, eight Pyrenophora species were identified, P. avenicola, P. chaetomioides, P. dictyoides, P. lolii, P. nobleae, P. teres, P. triseptata, and P. tritici-repentis; among them, P. avenicola, P. tritici-repentis, and P. triseptata were newly reported on Italian ryegrass worldwide. Seed inoculation showed that P. dictyoides, P. lolii, and P. teres remarkably decreased the final germination percentages and germination indexes compared with control treatments (P ≤ 0.05); and plant inoculation showed that P. dictyoides, P. lolii, and P. nobleae could cause typical brown spot in vivo with a higher infection rate (P ≤ 0.05). In conclusion, pathogenicity tests showed that all Pyrenophora species could both inhibit seed germination and infect Italian ryegrass to different degrees; among them, P. dictyoides was the most important seedborne pathogen based on the combination of its isolation and infection rate, followed by P. lolii and P. nobleae. The data generated in this study are helpful for the accurate identification of Pyrenophora species and the development of seedborne disease management strategies.


Asunto(s)
Ascomicetos , Lolium , Lolium/microbiología , Virulencia , Semillas , Italia
7.
Front Microbiol ; 13: 1044735, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36504776

RESUMEN

Introduction: Epichloë bromicola is a cultivable fungal endophyte that lives in symbiosis with wild barley (Hordeum brevisubulatum) to which it confers salt tolerance. This study tested the hypothesis that E. bromicola derived from wild barley has the potential to increase salt tolerance in cultivated barley under salt stress. Methods: To test this hypothesis, the growth response, physiological parameters, and metabolic profiles of barley plants inoculated with E. bromicola (E+) and those not inoculated with E. bromicola (E-) were compared under salt stress. Results: Compared with E- barley plants, E+ barley plants had significantly increased plant height, shoot biomass, total biomass, chlorophyll content, osmotic synthesis, and accumulation of stress adaptation metabolites. E. bromicola increased the salt stress tolerance of cultivated barley, and the positive effects correlated with different salt stress conditions. Discussion: These results suggest that E. bromicola has promising potential for enhancing the salt tolerance of barley. New insights into the mechanisms underlying this barley-fungal endophyte association are provided, and interesting questions regarding the role of E. bromicola in fungus-enhanced tolerance to salt stress in this symbiosis are raised.

8.
Biology (Basel) ; 11(12)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36552299

RESUMEN

Plant growth-promoting bacteria are generating increasing interest in the agricultural industry as a promising alternative to traditional chemical fertilizers; however, much of the focus has been on rhizosphere bacteria. Bacterial endophytes are another promising source of plant growth-promoting bacteria, and though many plants have already been prospected for beneficial microbes, desert plants have been underrepresented in such studies. In this study, we show the growth-promoting potential of five strains of endophytic Pseudomonas sp. isolated from Agave palmeri, an agave from the Sonoran Desert. When inoculated onto Kentucky bluegrass, clover, carrot, coriander, and wheat, endophytic Pseudomonas sp. increased seedling root lengths in all hosts and seedling shoot lengths in Kentucky bluegrass, carrot, and wheat. Transformation of the Pseudomonas sp. strain P3AW to express the fluorescent protein mCherry revealed that Pseudomonas sp. becomes endophytic in non-native hosts and participates in parts of the rhizophagy cycle, a process by which endophytic bacteria cycle between the soil and roots, bringing in nutrients from the soil which are then extracted through reactive oxygen-mediated bacterial degradation in the roots. Tracking of the Pseudomonas sp. strain P3AW also provided evidence for a system of endophyte, or endophyte cell content, transport via the vascular bundle. These results provide further evidence of the rhizophagy cycle in plants and how it relates to growth promotion in plants by biostimulant bacteria.

9.
Front Microbiol ; 13: 995830, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36212824

RESUMEN

Metal-induced oxidative stress in contaminated soils affects plant growth. In the present study, we evaluated the role of seed endophyte FXZ2 on Dysphania ambrosioides Zn/Cd tolerance and accumulation. A series of pot experiments were conducted under variable Zn (500, 1,000, and 1,500 mg kg-1) and Cd (5, 15, 30, and 60 mg kg-1). The results demonstrated that FXZ2-inoculation significantly enhanced the growth of D. ambrosioides and improved its chlorophyll and GSH content. In the rhizosphere, FXZ2 inoculation changed the chemical speciation of Zn/Cd and thus affected their uptake and accumulation in host plants. The exchangeable and carbonate-bound fractions (F1 + F2) of Zn decreased in the rhizosphere of FXZ2-inoculated plants (E+) as compared to non-inoculated plants (E-) under Zn stress (500 and 1,000 mg kg-1), correspondingly, Zn in the shoots of E+ decreased (p < 0.05). However, at Cd stress (30 and 60 mg kg-1), the F1 + F2 fractions of Cd in E+ rhizospheric soils increased; subsequently, Cd in the shoots of E+ increased (p < 0.05). FXZ2 could exogenously secrete phytohormones IAA, GA, and JA. The study suggests that seed endophyte FXZ2 can increase Zn/Cd tolerance of host plant by altering Zn/Cd speciation in rhizospheric soils, as well as exogenous production of phytohormones to promote growth, lowering oxidative damage while enhancing antioxidant properties. For Zn/Cd accumulation, it has opposite effects: Zn uptake in E+ plants was significantly (p < 0.05) decreased, while Cd accumulation in E+ plants was significantly (p < 0.05) increased. Thus, FXZ2 has excellent application prospects in Cd phytoextraction and decreasing Zn toxicity in agriculturally important crops.

10.
Microbiol Res ; 265: 127201, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36167006

RESUMEN

The genus Burkholderia has proven potential in improving plant performance. In recent decades, a huge diversity of Burkholderia spp. have been reported with diverse capabilities of plant symbiosis which could be harnessed to enhance plant growth and development. Colonization of endophytic Burkholderia spp. have been extensively studied through techniques like advanced microscopy, fluorescent labelling, PCR based assays, etc., and found to be systemically distributed in plants. Thus, use of these biostimulant microbes holds the promise of improving quality and quantity of crops. The endophytic Burkholderia spp. have been found to support plant functions along with boosting nutrient availability, especially under stress. Endophytic Burkholderia spp. improve plant survival against deadly pathogens via mechanisms like competition, induced systemic resistance, and antibiosis. At the same time, they are reported to extend plant tolerance towards multiple abiotic stresses especially drought, salinity, and cold. Several attempts have been made to decipher the potential of Burkholderia spp. by genome mining, and these bacteria have been found to harbour genes for plant symbiosis and for providing multiple benefits to host plants. Characteristics specific for host recognition and nutrient acquisition were confirmed in endophytic Burkholderia by genomics and proteomics-based studies. This could pave the way for harnessing Burkholderia spp. for biotechnological applications like biotransformation, phytoremediation, insecticidal activity, antimicrobials, etc. All these make Burkholderia spp. a promising microbial agent in improving plant performance under multiple adversities. Thus, the present review highlights critical roles of endophytic Burkholderia spp., their colonization, alleviation of biotic and abiotic stresses, biotechnological applications and genomic insights.


Asunto(s)
Burkholderia , Burkholderia/genética , Endófitos/metabolismo , Desarrollo de la Planta , Plantas/microbiología , Simbiosis
11.
J Fungi (Basel) ; 8(9)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36135653

RESUMEN

Cool season grasses often form reciprocal symbiotic relationships with endophytic fungal species in genus Epichloë. In this study, we characterized three fungal endophytes isolated from the grass Hordeum bogdanii native to northwest China. Based on morphological characteristics and phylogenetic analyses of tefA, tubB, and actG sequences, we identified them as Epichloë sp. HboTG-2 (H. bogdanii Taxonomic Group 2: E. bromicola × E. typhina). Alkaloid synthesis related genes analysis showed that Epichloë sp. HboTG-2 may have the ability only to produce peramine which is toxic to insects but not to animals. In the process of this study, we did not observe sexual structures or epiphyllous growth on leaves of infected plants.

12.
Biology (Basel) ; 11(6)2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35741397

RESUMEN

We used light and confocal microscopy to visualize bacteria in leaf and bract cells of more than 30 species in 18 families of seed plants. Through histochemical analysis, we detected hormones (including ethylene and nitric oxide), superoxide, and nitrogenous chemicals (including nitric oxide and nitrate) around bacteria within plant cells. Bacteria were observed in epidermal cells, various filamentous and glandular trichomes, and other non-photosynthetic cells. Most notably, bacteria showing nitrate formation based on histochemical staining were present in glandular trichomes of some dicots (e.g., Humulus lupulus and Cannabis sativa). Glandular trichome chemistry is hypothesized to function to scavenge oxygen around bacteria and reduce oxidative damage to intracellular bacterial cells. Experiments to assess the differential absorption of isotopic nitrogen into plants suggest the assimilation of nitrogen into actively growing tissues of plants, where bacteria are most active and carbohydrates are more available. The leaf and bract cell endosymbiosis types outlined in this paper have not been previously reported and may be important in facilitating plant growth, development, oxidative stress resistance, and nutrient absorption into plants. It is unknown whether leaf and bract cell endosymbioses are significant in increasing the nitrogen content of plants. From the experiments that we conducted, it is impossible to know whether plant trichomes evolved specifically as organs for nitrogen fixation or if, instead, trichomes are structures in which bacteria easily colonize and where some casual nitrogen transfer may occur between bacteria and plant cells. It is likely that the endosymbioses seen in leaves and bracts are less efficient than those of root nodules of legumes in similar plants. However, the presence of endosymbioses that yield nitrate in plants could confer a reduced need for soil nitrogen and constitute increased nitrogen-use efficiency, even if the actual amount of nitrogen transferred to plant cells is small. More research is needed to evaluate the importance of nitrogen transfer within leaf and bract cells of plants.

13.
Plant Dis ; 106(11): 2884-2891, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35412337

RESUMEN

Entomosporium leaf spot (ELS) is a serious hawthorn disease that mainly causes premature leaf senescence in various hawthorn growing areas worldwide. Diplocarpon mespili is the most commonly reported pathogen causing hawthorn ELS. From 2016 to 2018, hawthorn ELS disease surveys and samplings were carried out in five regions in three provinces of China. The disease incidence was about 20 to 95%. A total of 186 single-spored Diplocarpon isolates were obtained and identified using morphological and molecular phylogenetic analysis. The results showed that all isolates clustered, suggesting a distinct species that is here proposed as D. mespilicola sp. nov. This is the first report of the pathogen causing ELS on hawthorn in China, and it is similar to the species D. mespili. To explore the influence of temperature on the epidemiology of D. mespilicola, we studied the continuous influence of temperature and time on the germination of conidia by using nine time points and eight temperature gradient observations. This study indicated that the optimum temperature for conidial germination was 20.4°C, and the minimum germination time was 4.9 h. Using this information to develop a predictive model may provide a basis for disease management in hawthorn production in the future.


Asunto(s)
Crataegus , Filogenia , Esporas Fúngicas , Temperatura , China
14.
J Fungi (Basel) ; 8(2)2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35205925

RESUMEN

Hordeum vulgare is an important source of feed and forage for livestock, and of food and drink for humans, but its utilization rate is lower than that of other cereal crops, thus it is crucial to improve barley agronomic traits and production. Epichloë bromicola is an endophyte that was isolated from wild barley (Hordeum brevisubulatum). Previous studies have found that Epichloë can indirectly influence the growth of host plants by affecting soil chemical characteristics, the microbial community, and by producing a range of secondary metabolites. However, underlying effects of Epichloë on the abundance and diversity of soil and root microbes have not been well-studied. In addition, there is a question regarding the relationship between endophyte-produced alkaloids and effects on the root and rhizosphere microbial communities. The objective of this study was to investigate changes in agronomic traits, nutritional properties, peramine, soil chemical and microbial community in the fourth generation of new barley symbionts EI (E. bromicola-infection) and EF (E. bromicola-free) in LQ+4 and LZ+4. We understand the plant height and biomass of EI in LZ+4 were significantly higher than those of EF. The HPLC analysis showed that the peramine content of EI in LQ+4 and LZ+4 was 0.085 and 0.1 mg/g, respectively. We compared the bacterial and fungal communities by analyzing the 16s rRNA (for bacteria) and ITS rDNA regions (for fungi). Our data revealed that the composition of fungal communities in rhizosphere soil of LZ+4 EI are higher than EF. In addition, the diversity and richness of fungal communities in root and rhizosphere soil of LQ+4 EI and LZ+4 EI are significantly higher than EF. Rhizosphere soil microbial community composition was higher than that in roots in LQ+4 and LZ+4. Peramine was significantly and positively correlated with the richness of the soil fungal community. Moreover, the principal component analysis (PCoA) results indicated that E. bromicola significantly influenced the community composition of root and rhizosphere soil microbes in both LQ+4 and LZ+4. Our results illustrate that E. bromicola can influence barley growth, peramine production and microbial communities associated with barley.

15.
Environ Microbiol ; 24(8): 3322-3333, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35001475

RESUMEN

Stellera chamaejasme has become a problematic weed in northern and south-western grasslands of China. To evaluate a possible role of endophytes in its strong competitive capacity, the endophytic bacterial community of S. chamaejasme was investigated by culture-dependent and independent methods, and the growth-promoting traits of some culturable isolates as well as the benefit of endophyte ST3CS3 (Brevundimonas sp.) on host plants growth were studied. The results showed that 823 OTUs were generated with a 97% similarity level in the culture-independent study. They were classified into 29 phyla, 61 classes, 147 orders, 237 families and 440 genera. Among them, Pseudomonas and Ralstonia were the most dominant genera in belowground parts (G) (64.25%) and aboveground parts (S) (26.54%) respectively. The diversity and species richness of endophytes in S were significantly higher than that of G (P < 0.001, t-test). Contrary to this, the number of culturable bacteria in S was a little lower than that of G (P > 0.05, t-test). Totally, 176 isolates belonging to 30 morphotypes were obtained in the culture-dependent study. Among them, Acinetobacter was the most dominant genus in G (51.30%), then followed by Pseudomonas (6.09%) and Brevundimonas (6.09%), while Lysinibacillus (21.31%) was the most dominant genus in S, followed by Pseudomonas (11.48%). Growth-promoting trait tests indicated that 93.65% of the tested isolates (63) exhibited nitrogen-fixing, IAA-synthesizing, phosphorus or potassium solubilizing capacity, in which 77.97% belonged to Proteobacteria, a phylum found to contain more active isolates. Pot experiments demonstrated that endophyte ST3CS3 can significantly improve host plants growth and increase its nitrogen and chlorophyll content (P < 0.01, t-test). Therefore, we suggest that strong competitiveness of S. chamaejasme may in part be due to possession of high ratios of plant growth-promoting proteobacterial endophytes such as Pseudomonas, Acinetobacter and Brevundimonas.


Asunto(s)
Pradera , Thymelaeaceae , Bacterias , Endófitos , Humanos , Nitrógeno , Raíces de Plantas/microbiología , Proteobacteria , Thymelaeaceae/microbiología
16.
Front Microbiol ; 12: 774293, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34956137

RESUMEN

Seed endophytic bacteria (SEB) are primary symbionts that play crucial roles in plant growth and development. The present study reports the isolation of seven culturable SEB including Kosakonia cowanii (KAS1), Bacillus subtilis (KAS2), Bacillus tequilensis (KAS3), Pantoea stewartii (KAS4), Paenibacillus dendritiformis (KAS5), Pseudomonas aeruginosa (KAS6), and Bacillus velezensis (KAS7) in pearl millet seeds. All the isolates were characterized for their plant growth promoting activities. Most of the SEB also inhibited the growth of tested fungal phytopathogens in dual plate culture. Removal of these SEB from seeds compromised the growth and development of seedlings, however, re-inoculation with the SEB (Kosakonia cowanii, Pantoea stewartii, and Pseudomonas aeruginosa) restored the growth and development of seedlings significantly. Fluorescence microscopy showed inter and intracellular colonization of SEB in root parenchyma and root hair cells. Lipopeptides were extracted from all three Bacillus spp. which showed strong antifungal activity against tested fungal pathogens. Antifungal lipopeptide genes were also screened in Bacillus spp. After lipopeptide treatment, live-dead staining with fluorescence microscopy along with bright-field and scanning electron microscopy (SEM) revealed structural deformation and cell death in Fusarium mycelia and spores. Furthermore, the development of pores in the membrane and leakages of protoplasmic substances from cells and ultimately death of hyphae and spores were also confirmed. In microcosm assays, treatment of seeds with Bacillus subtilis or application of its lipopeptide alone significantly protected seedlings from Fusarium sp. infection.

17.
Microorganisms ; 9(11)2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34835309

RESUMEN

BACKGROUND: the cool-season grass Achnatherum inebrians (drunken horse grass) is an important species in the northwest grasslands of China. This grass engages in a symbiotic relationship with Epichloë endophytes, which affect host plants by increasing growth, repelling herbivores, and increasing tolerance to stressful environments. METHODS: in this work, we evaluated the interaction effects of the endophyte on various dormancy-breaking treatments on A. inebrians seeds from six different locations. We used both endophyte-infected plants and noninfected plants and applied four dormancy-breaking methods to test germination. RESULTS: our results showed that the germination rate of endophytic Achnatherum inebrians seeds from the Xiahe site (with highest altitude) was significantly higher than that from other sites when water soaking was applied (p < 0.05). Endophytic seeds had a greater germination rate, and soluble sugar, indole acetic acid (IAA), and gibberellin (GA) contents, under any condition. There was a significant interaction among the method, endophyte status, and origin regarding germination (p < 0.001); particularly, the effects of warm water soaking and endophyte infection on the germination of seeds from the Xiahe site was significant (p < 0.05). CONCLUSIONS: the infection of Epichloë endophyte is able to increase the content of soluble sugar, IAA, and GA, and stimulate the seed germination of A. inebrians.

18.
Insects ; 12(10)2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34680713

RESUMEN

The pea aphid Acyrthosiphon pisum has a worldwide distribution and causes serious losses for agricultural production. Drunken horse grass Achnatherum inebrians is a widely distributed perennial poisonous grass on the grasslands of Northern and Northwestern China. The present study focused on contact toxicity activity of aqueous extracts of endophyte-infected (E+) and endophyte-free (E-) A. inebrians in different growth periods of pea aphids, and the growth and development of two color morphs of F1 generation nymphs. Both of the color morphs had development durations in E+ treatments that tended to be longer at 1st, 2nd, 3rd, and 4th instars than E- and control (CK). The E+ treated aphids also showed decreased weights at maturity with over all lower mean relative growth rates (MRGR). Aphid survival of E+ treated aphids was lower than that of E- and CK at all growth periods. Seeding stage E+ extracts showed a greater propensity for negatively affecting aphids than did E+ extract at maturity and the yellowing stage. These results show that extracts from endophyte-containing plants may contain compounds that may be used to control insects.

19.
Biology (Basel) ; 10(10)2021 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-34681060

RESUMEN

Deserts are challenging places for plants to survive in due to low nutrient availability, drought and heat stress, water stress, and herbivory. Endophytes-microbes that colonize and infect plant tissues without causing apparent disease-may contribute to plant success in such harsh environments. Current knowledge of desert plant endophytes is limited, but studies performed so far reveal that they can improve host nutrient acquisition, increase host tolerance to abiotic stresses, and increase host resistance to biotic stresses. When considered in combination with their broad host range and high colonization rate, there is great potential for desert endophytes to be used in a commercial agricultural setting, especially as croplands face more frequent and severe droughts due to climate change and as the agricultural industry faces mounting pressure to break away from agrochemicals towards more environmentally friendly alternatives. Much is still unknown about desert endophytes, but future studies may prove fruitful for the discovery of new endophyte-based biofertilizers, biocontrol agents, and abiotic stress relievers of crops.

20.
Microorganisms ; 9(9)2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34576701

RESUMEN

Climatic factors and pathogenic fungi threaten global banana production. Moreover, bananas are being cultivated using excessive amendments of nitrogen and pesticides, which shift the microbial diversity in plants and soil. Advances in high-throughput sequencing (HTS) technologies and culture-dependent methods have provided valuable information about microbial diversity and functionality of plant-associated endophytic communities. Under stressful (biotic or abiotic) conditions, plants can recruit sets of microorganisms to alleviate specific potentially detrimental effects, a phenomenon known as "cry for help". This mechanism is likely initiated in banana plants infected by Fusarium wilt pathogen. Recently, reports demonstrated the synergistic and cumulative effects of synthetic microbial communities (SynComs) on naturally occurring plant microbiomes. Indeed, probiotic SynComs have been shown to increase plant resilience against biotic and abiotic stresses and promote growth. This review focuses on endophytic bacterial diversity and keystone taxa of banana plants. We also discuss the prospects of creating SynComs composed of endophytic bacteria that could enhance the production and sustainability of Cavendish bananas (Musa acuminata AAA), the fourth most important crop for maintaining global food security.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA