Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nature ; 618(7965): 583-589, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37286596

RESUMEN

Bacteroidetes are abundant members of the human microbiota, utilizing a myriad of diet- and host-derived glycans in the distal gut1. Glycan uptake across the bacterial outer membrane of these bacteria is mediated by SusCD protein complexes, comprising a membrane-embedded barrel and a lipoprotein lid, which is thought to open and close to facilitate substrate binding and transport. However, surface-exposed glycan-binding proteins and glycoside hydrolases also play critical roles in the capture, processing and transport of large glycan chains. The interactions between these components in the outer membrane are poorly understood, despite being crucial for nutrient acquisition by our colonic microbiota. Here we show that for both the levan and dextran utilization systems of Bacteroides thetaiotaomicron, the additional outer membrane components assemble on the core SusCD transporter, forming stable glycan-utilizing machines that we term utilisomes. Single-particle cryogenic electron microscopy structures in the absence and presence of substrate reveal concerted conformational changes that demonstrate the mechanism of substrate capture, and rationalize the role of each component in the utilisome.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa , Membrana Externa Bacteriana , Bacteroides thetaiotaomicron , Tracto Gastrointestinal , Polisacáridos , Humanos , Membrana Externa Bacteriana/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Bacteroides thetaiotaomicron/enzimología , Bacteroides thetaiotaomicron/metabolismo , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/microbiología , Glicósido Hidrolasas/metabolismo , Polisacáridos/metabolismo
2.
ACS Chem Neurosci ; 14(1): 53-71, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36512740

RESUMEN

Self-assembly of the amyloid-ß (Aß) peptide to form toxic oligomers and fibrils is a key causal event in the onset of Alzheimer's disease, and Aß is the focus of intense research in neuroscience, biophysics, and structural biology aimed at therapeutic development. Due to its rapid self-assembly and extreme sensitivity to aggregation conditions, preparation of seedless, reproducible Aß solutions is highly challenging, and there are serious ongoing issues with consistency in the literature. In this paper, we use a liquid-phase separation technique, asymmetric flow field-flow fractionation with multiangle light scattering (AF4-MALS), to develop and validate a simple, effective, economical method for re-solubilization and quality control of purified, lyophilized Aß samples. Our findings were obtained with recombinant peptide but are physicochemical in nature and thus highly relevant to synthetic peptide. We show that much of the variability in the literature stems from the inability of overly mild solvent treatments to produce consistently monomeric preparations and is rectified by a protocol involving high-pH (>12) dissolution, sonication, and rapid freezing to prevent modification. Aß treated in this manner is chemically stable, can be stored over long timescales at -80 °C, and exhibits remarkably consistent self-assembly behavior when returned to near-neutral pH. These preparations are highly monomeric, seedless, and do not require additional rounds of size exclusion, eliminating the need for this costly procedure and increasing the flexibility of use. We propose that our improved protocol is the simplest, fastest, and most effective way to solubilize Aß from diverse sources for sensitive self-assembly and toxicity assays.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Humanos , Péptidos beta-Amiloides/química , Precursor de Proteína beta-Amiloide , Fragmentos de Péptidos/química
3.
J Vis Exp ; (171)2021 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-34125091

RESUMEN

Cryo-electron microscopy (cryoEM) is a powerful technique for structure determination of macromolecular complexes, via single particle analysis (SPA). The overall process involves i) vitrifying the specimen in a thin film supported on a cryoEM grid; ii) screening the specimen to assess particle distribution and ice quality; iii) if the grid is suitable, collecting a single particle dataset for analysis; and iv) image processing to yield an EM density map. In this protocol, an overview for each of these steps is provided, with a focus on the variables which a user can modify during the workflow and the troubleshooting of common issues. With remote microscope operation becoming standard in many facilities, variations on imaging protocols to assist users in efficient operation and imaging when physical access to the microscope is limited will be described.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Microscopía por Crioelectrón , Sustancias Macromoleculares
4.
Nat Commun ; 12(1): 44, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33398001

RESUMEN

In Bacteroidetes, one of the dominant phyla of the mammalian gut, active uptake of large nutrients across the outer membrane is mediated by SusCD protein complexes via a "pedal bin" transport mechanism. However, many features of SusCD function in glycan uptake remain unclear, including ligand binding, the role of the SusD lid and the size limit for substrate transport. Here we characterise the ß2,6 fructo-oligosaccharide (FOS) importing SusCD from Bacteroides thetaiotaomicron (Bt1762-Bt1763) to shed light on SusCD function. Co-crystal structures reveal residues involved in glycan recognition and suggest that the large binding cavity can accommodate several substrate molecules, each up to ~2.5 kDa in size, a finding supported by native mass spectrometry and isothermal titration calorimetry. Mutational studies in vivo provide functional insights into the key structural features of the SusCD apparatus and cryo-EM of the intact dimeric SusCD complex reveals several distinct states of the transporter, directly visualising the dynamics of the pedal bin transport mechanism.


Asunto(s)
Proteínas Bacterianas/metabolismo , Microbioma Gastrointestinal , Polisacáridos/metabolismo , Simbiosis , Proteínas Bacterianas/química , Microscopía por Crioelectrón , Ligandos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Oligosacáridos/química , Polisacáridos/química , Conformación Proteica , Relación Estructura-Actividad
5.
Nat Microbiol ; 5(8): 1016-1025, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32393857

RESUMEN

Porphyromonas gingivalis, an asaccharolytic member of the Bacteroidetes, is a keystone pathogen in human periodontitis that may also contribute to the development of other chronic inflammatory diseases. P. gingivalis utilizes protease-generated peptides derived from extracellular proteins for growth, but how these peptides enter the cell is not clear. Here, we identify RagAB as the outer-membrane importer for these peptides. X-ray crystal structures show that the transporter forms a dimeric RagA2B2 complex, with the RagB substrate-binding surface-anchored lipoprotein forming a closed lid on the RagA TonB-dependent transporter. Cryo-electron microscopy structures reveal the opening of the RagB lid and thus provide direct evidence for a 'pedal bin' mechanism of nutrient uptake. Together with mutagenesis, peptide-binding studies and RagAB peptidomics, our work identifies RagAB as a dynamic, selective outer-membrane oligopeptide-acquisition machine that is essential for the efficient utilization of proteinaceous nutrients by P. gingivalis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Oligopéptidos/metabolismo , Porphyromonas gingivalis/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Microscopía por Crioelectrón , Cristalografía por Rayos X , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Simulación de Dinámica Molecular , Periodontitis/microbiología , Porphyromonas gingivalis/genética , Porphyromonas gingivalis/crecimiento & desarrollo , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA