Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Geroscience ; 42(3): 923-936, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32227279

RESUMEN

Increased availability of cannabis and cannabinoid-containing products necessitates the need for an understanding of how these substances influence aging. In this study, zebrafish (Danio rerio) were exposed to different concentrations of THC (0.08, 0.4, 2 µM) during embryonic-larval development and the effects on aging were measured 30 months later and in the offspring of the exposed fish (F1 generation). Exposure to 0.08 µM THC resulted in increased male survival at 30 months of age. As the concentration of THC increased, this protective effect was lost. Treatment with the lowest concentration of THC also significantly increased egg production, while higher concentrations resulted in impaired fecundity. Treatment with the lowest dose of THC significantly reduced wet weight, the incidence of kyphosis, and the expression of several senescence and inflammatory markers (p16ink4ab, tnfα, il-1ß, il-6, pparα and pparγ) in the liver, but not at higher doses indicating a biphasic or hormetic effect. Exposure to THC did not affect the age-related reductions in locomotor behavior. Within the F1 generation, many of these changes were not observed. However, the reduction in fecundity due to THC exposure was worse in the F1 generation because offspring whose parents received high dose of THC were completely unable to reproduce. Together, our results demonstrate that a developmental exposure to THC can cause significant effects on longevity and healthspan of zebrafish in a biphasic manner.


Asunto(s)
Dronabinol , Pez Cebra , Animales , Dronabinol/toxicidad , Inflamación/inducido químicamente , Longevidad , Masculino , Reproducción
2.
Geroscience ; 42(2): 785-800, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32221778

RESUMEN

Consumption of cannabinoid-containing products is on the rise, even during pregnancy. Unfortunately, the long-term, age-related consequences of developmental cannabidiol (CBD) exposure remain largely unknown. This is a critical gap given the established Developmental Origins of Health and Disease (DOHaD) paradigm which emphasizes that stressors, like drug exposure, early in life can instigate molecular and cellular changes that ultimately lead to adverse outcomes later in life. Thus, we exposed zebrafish (Danio rerio) to varying concentrations of CBD (0.02, 0.1, 0.5 µM) during larval development and assessed aging in both the F0 (exposed generation) and their F1 offspring 30 months later. F0 exposure to CBD significantly increased survival (~ 20%) and reduced size (wet weight and length) of female fish. While survival was increased, the age-related loss of locomotor function was unaffected and the effects on fecundity varied by sex and dose. Treatment with 0.5 µM CBD significantly reduced sperm concentration in males, but 0.1 µM increased egg production in females. Similar to other model systems, control aged zebrafish exhibited increased kyphosis as well as increased expression markers of senescence, and inflammation (p16ink4ab, tnfα, il1b, il6, and pparγ) in the liver. Exposure to CBD significantly reduced the expression of several of these genes in a dose-dependent manner relative to the age-matched controls. The effects of CBD on size, gene expression, and reproduction were not reproduced in the F1 generation, suggesting the influence on aging was not cross-generational. Together, our results demonstrate that developmental exposure to CBD causes significant effects on the health and longevity of zebrafish.


Asunto(s)
Cannabidiol , Longevidad , Pez Cebra , Animales , Cannabidiol/farmacología , Femenino , Longevidad/efectos de los fármacos , Masculino , Embarazo , Reproducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA