Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Chemistry ; 28(5): e202103420, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-34817102

RESUMEN

Understanding the impact of shaping processes on solid adsorbents is critical for the implementation of MOFs in industrial separation processes or as catalytic materials. Production of MOF-containing shaped particles is typically associated with loss of porosity and modification of acid sites, two phenomena that affect their performance. Herein, we report a detailed study on how extrusion affects the crystallinity, porosity, and acidity of the aluminium fumarate MOF with clays or SiO2 gel binders. Thorough characterization showed that the clay binders confer the extrudates a good mechanical robustness at the expense of porosity, while silica gel shows an opposite trend. The CO2 selectivity towards CH4 , of interest for natural gas separation processes, is maintained upon the extrusion process. Moreover, probe FTIR spectroscopy revealed no major changes in the types of acid sites. This study highlights that these abundant and inexpensive clay materials may be used for scaling MOFs as active adsorbents.


Asunto(s)
Estructuras Metalorgánicas , Aluminio , Fumaratos , Porosidad , Dióxido de Silicio
2.
Angew Chem Int Ed Engl ; 58(12): 3908-3912, 2019 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-30681254

RESUMEN

Although industrialized, the mechanism for catalytic upgrading of bioethanol over solid-acid catalysts (that is, the ethanol-to-hydrocarbons (ETH) reaction) has not yet been fully resolved. Moreover, mechanistic understanding of the ETH reaction relies heavily on its well-known "sister-reaction" the methanol-to-hydrocarbons (MTH) process. However, the MTH process possesses a C1 -entity reactant and cannot, therefore, shed any light on the homologation reaction sequence. The reaction and deactivation mechanism of the zeolite H-ZSM-5-catalyzed ETH process was elucidated using a combination of complementary solid-state NMR and operando UV/Vis diffuse reflectance spectroscopy, coupled with on-line mass spectrometry. This approach establishes the existence of a homologation reaction sequence through analysis of the pattern of the identified reactive and deactivated species. Furthermore, and in contrast to the MTH process, the deficiency of any olefinic-hydrocarbon pool species (that is, the olefin cycle) during the ETH process is also noted.

3.
Nat Chem ; 11(1): 23-31, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30397319

RESUMEN

The performances of porous materials are closely related to the accessibility and interconnectivity of their porous domains. Visualizing pore architecture and its role on functionality-for example, mass transport-has been a challenge so far, and traditional bulk and often non-visual pore measurements have to suffice in most cases. Here, we present an integrated, facile fluorescence microscopy approach to visualize the pore accessibility and interconnectivity of industrial-grade catalyst bodies, and link it unequivocally with their catalytic performance. Fluorescent nanoprobes of various sizes were imaged and correlated with the molecular transport of fluorescent molecules formed during a separate catalytic reaction. A direct visual relationship between the pore architecture-which depends on the pore sizes and interconnectivity of the material selected-and molecular transport was established. This approach can be applied to other porous materials, and the insight gained may prove useful in the design of more efficient heterogeneous catalysts.

4.
Angew Chem Int Ed Engl ; 57(27): 8095-8099, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29710435

RESUMEN

After a prolonged effort over many years, the route for the formation of a direct carbon-carbon (C-C) bond during the methanol-to-hydrocarbon (MTH) process has very recently been unveiled. However, the relevance of the "direct mechanism"-derived molecules (that is, methyl acetate) during MTH, and subsequent transformation routes to the conventional hydrocarbon pool (HCP) species, are yet to be established. This important piece of the MTH chemistry puzzle is not only essential from a fundamental perspective, but is also important to maximize catalytic performance. The MTH process was probed over a commercially relevant H-SAPO-34 catalyst, using a combination of advanced solid-state NMR spectroscopy and operando UV/Vis diffuse reflectance spectroscopy coupled to an on-line mass spectrometer. Spectroscopic evidence is provided for the formation of (olefinic and aromatic) HCP species, which are indeed derived exclusively from the direct C-C bond-containing acetyl group of methyl acetate. New mechanistic insights have been obtained from the MTH process, including the identification of hydrocarbon-based co-catalytic organic reaction centers.

5.
Angew Chem Int Ed Engl ; 55(51): 15840-15845, 2016 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-27805783

RESUMEN

Methanol-to-olefin (MTO) catalysis is a very active field of research because there is a wide variety of sometimes conflicting mechanistic proposals. An example is the ongoing discussion on the initial C-C bond formation from methanol during the induction period of the MTO process. By employing a combination of solid-state NMR spectroscopy with UV/Vis diffuse reflectance spectroscopy and mass spectrometry on an active H-SAPO-34 catalyst, we provide spectroscopic evidence for the formation of surface acetate and methyl acetate, as well as dimethoxymethane during the MTO process. As a consequence, new insights in the formation of the first C-C bond are provided, suggesting a direct mechanism may be operative, at least in the early stages of the MTO reaction.

6.
Faraday Discuss ; 188: 369-86, 2016 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-27101314

RESUMEN

Zeolite-based catalyst bodies are commonly employed in a range of important industrial processes. Depending on the binder and shaping method chosen, vast differences in the reactivity, selectivity and stability are obtained. Here, three highly complementary micro-spectroscopic techniques were employed to study zeolite ZSM-5-binder interactions in SiO2-, Al2O3-, SiO2 : Al2O3- (2 : 1 mix) and kaolinite-bound catalyst pellets. We establish how their preparation influences the zeolite-clay/binder interactions. Using thiophene as an acid-catalyzed staining reaction, light absorbing oligomers produced in each sample were followed. To our surprise, kaolinite decreased the overall reactivity of the sample due to the phase change of the binder, creating a hard impenetrable outer layer. Aluminum migration to the zeolite was observed when Al2O3 was selected as a binder, creating additional Brønsted acid sites, which favored the formation of ring-opened thiophene oligomers compared to the larger oligomer species produced when SiO2 was used as a binder. In the latter case, the interaction of the Si-OH groups in the binder with thiophene was revealed to have a large impact in creating such large oligomer species. Furthermore, the combination of a SiO2 : Al2O3 mix as a binder enhanced the reactivity, possibly due to the creation of additional Brønsted acid sites between the two binder components during pellet preparation. It is evident that, independent of the shaping method, the intimate contact between the zeolite and binder heavily impacts the reactivity and product selectivity, with the type of binder playing a vital role.

7.
Chemistry ; 22(1): 199-210, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26611940

RESUMEN

Large zeolite crystals of ferrierite have been used to study the deactivation, at the single particle level, of the alkyl isomerisation catalysis of oleic acid and elaidic acid by a combination of visible micro-spectroscopy and fluorescence microscopy (both polarised wide-field and confocal modes). The large crystals did show the desired activity, albeit only traces of the isomerisation product were obtained and low conversions were achieved compared to commercial ferrierite powders. This limited activity is in line with their lower external non-basal surface area, supporting the hypothesis of pore mouth catalysis. Further evidence for the latter comes from visible micro-spectroscopy, which shows that the accumulation of aromatic species is limited to the crystal edges, while fluorescence microscopy strongly suggests the presence of polyenylic carbocations. Light polarisation associated with the spatial resolution of fluorescence microscopy reveals that these carbonaceous deposits are aligned only in the larger 10-MR channels of ferrierite at all crystal edges. The reaction is hence further limited to these specific pore mouths.


Asunto(s)
Boca/química , Ácido Oléico/química , Zeolitas/química , Catálisis , Isomerismo , Microscopía Fluorescente , Ácido Oléico/síntesis química
8.
Phys Chem Chem Phys ; 18(3): 2080-6, 2016 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-26685895

RESUMEN

In an earlier work, protonated thiophene-based oligomers were identified inside ZSM-5 zeolites. The novel compounds exhibited π-π* absorption wavelengths deep within the visible region, earmarking them for possible use as chromophores in a variety of applications. In this computational study, we determine the factors that cause such low-energy transitions, and describe the electronic structure of these remarkable compounds. DFT calculations of conjugated thiophene-based oligomers with up to five monomer units reveal that the main absorption band of each protonated oligomer is strongly red-shifted compared to the unprotonated form. This effect is counterintuitive, since protonation is expected to diminish aromaticity, and thereby increase the HOMO-LUMO gap. We find that upon protonation the π-electrons remain delocalized over the entire π-conjugated molecule, but the positive charge is localized predominantly on the protonated side of the molecule. A possible explanation for this ground-state charge localization is the participation of the C-H bond in the π-system of the protonated ring, locally providing aromatic stabilization for the positive charge. The addition of the proton stabilizes all electronic orbitals, but due to the ground state π-electron distribution away from the added nucleus, the HOMO is stabilized less than the LUMO. The main absorption peak upon protonation corresponds to the charge transfer excitation involving the frontier orbitals, and the small band gap explains the observed red shift. Analogue calculations on thiophene within a ZSM-5 zeolite cluster model confirm the same trends upon protonation as observed in the non-interacting compounds. Understanding the electronic structure of these compounds is very relevant to correlate UV-Vis bands with acidic strength and possibly environment in zeolites and to improve their performance in catalytic and energy related applications.

9.
ChemCatChem ; 7(8): 1312-1321, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-27158274

RESUMEN

Microspectroscopic methods were explored to investigate binder effects occurring in ZSM-5-containing SiO2- and Al2O3-bound millimetre-sized extrudates. Using thiophene as a selective probe for Brønsted acidity, coupled with time-resolved in situ UV/Vis and confocal fluorescence microspectroscopy, variations in reactivity and selectivity between the two distinct binder types were established. It was found that aluminium migration occurs in ZSM-5-containing Al2O3-bound extrudates, forming additional Brønsted acid sites. These sites strongly influence the oligomer selectivity, favouring the formation of thiol-like species (i.e., ring-opened species) in contrast to higher oligomers, predominantly formed on SiO2-bound ZSM-5-containing extrudates. Not only were the location and distribution of these oligomers visualised by 3 D analysis, it was also observed that more conjugated species appeared to grow off the surface of the zeolite ZSM-5 crystals (containing less conjugated species) into the surrounding binder material. Furthermore, a higher binder content resulted in an increasing overall reactivity owing to the greater number of stored thiophene monomers available per Brønsted acid site.

10.
Phys Chem Chem Phys ; 16(39): 21531-42, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25188580

RESUMEN

Optical absorption and confocal fluorescence micro-spectroscopy were applied to investigate Brønsted acidity in millimetre-sized extrudates of Na(H)-ZSM-5 and SiO2 with varying ZSM-5 content. Partially (residual Na present) and fully proton-exchanged extrudates were employed, using thiophene oligomerization as a probe reaction. Time-resolved in situ optical absorption spectra and time dependent DFT calculations revealed several initial reaction pathways during the oligomerization reaction. In particular, it was found that protonated thiophene monomers reacted by either oligomerization (via reaction with un-reacted thiophene monomers) or ring-opening, depending on the Brønsted acid site density in each sample. Moreover, fully-exchanged extrudates not only have significantly higher reactivity than partially-exchanged samples, but they also favour the formation of ring-opening products, that are not formed on the partially-exchanged samples. Confocal fluorescence microscopy was employed to visualise non-invasively in 3D, the heterogeneity and homogeneity of thiophene oligomers on partially- and fully-exchanged extrudates, respectively. Furthermore, it was observed that extrudates with high binder content produce a higher relative amount of conjugated species, related with a higher quantity of available monomer in the binder, which is able to react further with intermediates adsorbed on active sites. Moreover, these conjugated species appear to form near the external surface of ZSM-5 crystals/agglomerates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA