Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Acta Biomater ; 48: 300-308, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27793720

RESUMEN

This paper investigates the effects of moisture, anisotropy, stress state, and strain rate on the mechanical properties of the bighorn sheep (Ovis Canadensis) horn keratin. The horns consist of fibrous keratin tubules extending along the length of the horn and are contained within an amorphous keratin matrix. Samples were tested in the rehydrated (35wt% water) and ambient dry (10wt% water) conditions along the longitudinal and radial directions under tension and compression. Increased moisture content was found to increase ductility and decrease strength, as well as alter the stress state dependent nature of the material. The horn keratin demonstrates a significant strain rate dependence in both tension and compression, and also showed increased energy absorption in the hydrated condition at high strain rates when compared to quasi-static data, with increases of 114% in tension and 192% in compression. Compressive failure occurred by lamellar buckling in the longitudinal orientation followed by shear delamination. Tensile failure in the longitudinal orientation occurred by lamellar delamination combined with tubule pullout and fracture. The structure-property relationships quantified here for bighorn sheep horn keratin can be used to help validate finite element simulations of ram's impacting each other as well as being useful for other analysis regarding horn keratin on other animals. STATEMENT OF SIGNIFICANCE: The horn of the bighorn sheep is an anisotropic composite composed of keratin that is highly sensitive to moisture content. Keratin is also found in many other animals in the form of hooves, claws, beaks, and feathers. Only one previous study contains high rate experimental data, which was performed in the dry condition and only in compression. Considering the bighorn sheep horns' protective role in high speed impacts along with the moisture and strain rate sensitivity, more high strain rate data is needed to fully characterize and model the material. This study provides high strain rate results demonstrating the effects of moisture, anisotropy, and stress state. As a result, the comprehensive data allows modeling efforts to be greatly improved.


Asunto(s)
Cuernos/química , Humedad , Queratinas/química , Estrés Mecánico , Animales , Anisotropía , Fenómenos Biomecánicos , Fuerza Compresiva , Cuernos/ultraestructura , Procesamiento de Imagen Asistido por Computador , Borrego Cimarrón , Estadística como Asunto , Resistencia a la Tracción
2.
J Biomech ; 47(15): 3704-11, 2014 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-25446270

RESUMEN

We induced mild blunt and blast injuries in rats using a custom-built device and utilized in-house diffusion tensor imaging (DTI) software to reconstruct 3-D fiber tracts in brains before and after injury (1, 4, and 7 days). DTI measures such as fiber count, fiber length, and fractional anisotropy (FA) were selected to characterize axonal integrity. In-house image analysis software also showed changes in parameters including the area fraction (AF) and nearest neighbor distance (NND), which corresponded to variations in the microstructure of Hematoxylin and Eosin (H&E) brain sections. Both blunt and blast injuries produced lower fiber counts, but neither injury case significantly changed the fiber length. Compared to controls, blunt injury produced a lower FA, which may correspond to an early onset of diffuse axonal injury (DAI). However, blast injury generated a higher FA compared to controls. This increase in FA has been linked previously to various phenomena including edema, neuroplasticity, and even recovery. Subsequent image analysis revealed that both blunt and blast injuries produced a significantly higher AF and significantly lower NND, which correlated to voids formed by the reduced fluid retention within injured axons. In conclusion, DTI can detect subtle pathophysiological changes in axonal fiber structure after mild blunt and blast trauma. Our injury model and DTI method provide a practical basis for studying mild traumatic brain injury (mTBI) in a controllable manner and for tracking injury progression. Knowledge gained from our approach could lead to enhanced mTBI diagnoses, biofidelic constitutive brain models, and specialized pharmaceutical treatments.


Asunto(s)
Axones/patología , Traumatismos por Explosión/patología , Lesiones Encefálicas/patología , Encéfalo/patología , Animales , Anisotropía , Imagen de Difusión Tensora , Masculino , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...