Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Am J Chin Med ; 46(5): 1021-1044, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29986596

RESUMEN

An extract of Dendropanax morbifera branch exerts antioxidant, anti-inflammatory, antithrombotic, and anticancer activities. The purpose of this study was to investigate the effect of the extract in isoproterenol-induced cardiac hypertrophy. Phalloidin staining showed that treatment with the extract dramatically prevents isoproterenol-induced H9c2 cell enlargement and the expression of cardiac hypertrophic marker genes, including atrial natriuretic peptide (ANP) and B-type brain natriuretic peptide (BNP). Further, pretreatment with the extract decreased isoproterenol-induced GATA4 and Sp1 expression in H9c2 cells. Overexpression of Sp1 induced the expression of GATA4. The forced expression of Sp1 or its downstream target GATA4, as well as the co-transfection of Sp1 and GATA4 increased the expression of ANP, which was decreased by treatment with the extract. To further elucidate the regulation of the Sp1/GATA4-mediated expression of ANP, knockdown experiments were performed. Transfection with small interfering RNAs (siRNAs) for Sp1 or GATA4 decreased ANP expression. The extract did not further inhibit the expression of ANP reduced by the transfection of GATA4 siRNA. Sp1 knockdown did not affect the expression of ANP that was induced by the overexpression of GATA4; however, GATA4 knockdown abolished the expression of ANP that had been induced by Sp1 overexpression. The extract treatment also attenuated the isoproterenol-induced activation of p38 MAPK, ERK1/2, and JNK1. Hesperidin, catechin, 2,5-dihydroxybenzoic acid, and salicylic acid are the main phenolic compounds present in the extract as observed by high performance liquid chromatography. Hesperidin and 2,5-dihydroxybenzoic acid attenuated isoproterenol-induced cardiac hypertrophy. These findings suggest that the D. morbifera branch extract prevents cardiac hypertrophy by downregulating the activation of Sp1/GATA4 and MAPK signaling pathways.


Asunto(s)
Araliaceae/química , Cardiomegalia/metabolismo , Factor de Transcripción GATA4/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Extractos Vegetales/farmacología , Factor de Transcripción Sp1/metabolismo , Animales , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/genética , Línea Celular , Regulación hacia Abajo/efectos de los fármacos , Factor de Transcripción GATA4/genética , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Miocitos Cardíacos/metabolismo , Ratas , Transducción de Señal/efectos de los fármacos , Factor de Transcripción Sp1/genética
2.
Artículo en Inglés | MEDLINE | ID: mdl-27340422

RESUMEN

Hypercholesterolemia is a well-known etiological factor for cardiovascular disease and a common symptom of most types of metabolic disorders. Camellia japonica is a traditional garden plant, and its flower and seed have been used as a base oil of traditional cosmetics in East Asia. The present study was carried out to evaluate the effect of C. japonica fruit extracts (CJF) in a high fat diet- (HFD-) induced hypercholesterolemic rat model. CJF was administered orally at three different doses: 100, 400, and 800 mg·kg(-1)·day(-1) (CJF 100, 400, and 800, resp.). Our results showed that CJF possessed strong cholesterol-lowering potency as indicated by the decrease in serum total cholesterol (TC), triglyceride (TG), and low-density lipoprotein (LDL), accompanied by an increase in serum high-density lipoprotein (HDL). Furthermore, CJF reduced serum lipid peroxidation by suppressing the formation of thiobarbituric acid reactive substance. In addition, oil red O (ORO) staining of rat arteries showed decreased lipid-positive staining in the CJF-treated groups compared to the control HFD group. Taken together, these results suggest that CJF could be a potent herbal therapeutic option and source of a functional food for the prevention and treatment of atherosclerosis and other diseases associated with hypercholesterolemia.

3.
Oxid Med Cell Longev ; 2015: 6309565, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26697138

RESUMEN

Camellia japonica is a popular garden plant in Asia and widely used as cosmetic sources and traditional medicine. However, the possibility that C. japonica affects cardiovascular system remains unclear. The aim of the present study was to evaluate vascular effects of an extract of C. japonica. Vascular reactivity was assessed in organ baths using porcine coronary arteries and inhibition of proliferation and migration were assessed using human vascular smooth muscle cells (VSMCs). All four different parts, leaf, stem, flower, and fruits, caused concentration-dependent relaxations and C. japonica fruit (CJF) extract showed the strongest vasorelaxation and its effect was endothelium dependent. Relaxations to CJF were markedly reduced by inhibitor of endothelial nitric oxide synthase (eNOS) and inhibitor of PI3-kinase, but not affected by inhibitor of cyclooxygenase and endothelium-derived hyperpolarizing factor-mediated response. CJF induced activated a time- and concentration-dependent phosphorylation of eNOS in endothelial cells. Altogether, these studies have demonstrated that CJF is a potent endothelium-dependent vasodilator and this effect was involved in, at least in part, PI3K-eNOS-NO pathway. Moreover, CJF attenuated TNF-α induced proliferation and PDGF-BB induced migration of VSMCs. The present findings indicate that CJF could be a valuable candidate of herbal medicine for cardiovascular diseases associated with endothelial dysfunction and atherosclerosis.


Asunto(s)
Camellia/química , Vasos Coronarios/fisiología , Etanol/química , Extractos Vegetales/farmacología , Vasodilatación/efectos de los fármacos , Animales , Camellia/metabolismo , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Frutas/química , Frutas/metabolismo , Humanos , Medicina Tradicional de Asia Oriental , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación/efectos de los fármacos , Extractos Vegetales/química , Prostaglandina-Endoperóxido Sintasas/química , Prostaglandina-Endoperóxido Sintasas/metabolismo , Porcinos
4.
J Nanosci Nanotechnol ; 15(1): 116-9, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26328313

RESUMEN

The plant Dendropanax morbifera Léveille (D. morbifera), a subtropical broad-leaved evergreen tree, have been used in folk medicine for the treatment of infectious diseases, skin diseases, and other maladies. However, the effect of extracts from D. morbifera in vascuar diseases has not yet been reported. In this study, BrdU assay revealed that extracts from D. morbifera inhibit significantly the proliferation rate of Rat Aortic Smooth Muscle Cells (RAoSMCs) by -40% in treated samples compared to controls. Notably, 2-D wound healing assay and 3-D boyden chamber assay showed the significant reduction of RAoSMCs migration induced by serum in nano extracts treated groups by -50%. We further observed that the phosphorylated levels of Akt and ERK were significantly reduced by 70% in extracts treated RAoSMCs. Moreover, the expression levels of matrix metalloproteinase (MMP) 2 and 9 were significantly reduced by extracts from D. morbifera. Our results suggest that extracts from D. morbifera inhibit proliferation and migration in RAoSMCs via the modulation of phosphorylated levels of Akt and ERK. Subsequently, the reduced MMP2 and 9 expression might result to reduced migration of RAoSMCs.


Asunto(s)
Araliaceae/química , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Animales , Células Cultivadas , Músculo Liso Vascular/citología , Hojas de la Planta/química , Tallos de la Planta/química , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...