Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 829: 154560, 2022 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-35302023

RESUMEN

Agriculture continues to place unwanted pressure on peatland functionality, despite international recognition calling for their conservation and restoration. Rewetting of peatlands is often the first step of restoration that aims towards improving the delivery of ecosystem services and their benefits for human well-being. Ongoing debates on peatland restoration in agricultural landscapes raise several issues based on the valuation of benefits achieved versus the costs of peatland restoration. Using the transborder Neman River Basin in North-Eastern Europe, this study aimed to quantify and evaluate the gains provided by peatland rewetting. To achieve this, this study estimated i) possible changes in water storage capacity from peatland restoration, ii) the value of expected benefits from restoration and iii) costs of restoration measures at the overarching basin level. Applying multiple assumptions, it was revealed that rewetting drained peatlands in the Neman River Basin could increase water retention by 23.6-118 M m3. This corresponds to 0.14-0.7% of the total annual Neman River discharge into the Baltic Sea. Unit increase of water retention volume due to rewetting ranged between 69 and 344 m3·ha-1. The estimated water retention value ranged between 12 and 60.2 M EUR·year-1. It was also shown that peatland rewetting at the scale of Neman River Basin would cost from 6.8 M and 51.5 M EUR·year-1 depending on the selected scenario. Applying less expensive rewetting measures (non-regulated outflow from ditch blocks), the economic gains (as water storage ecosystem service of rewetted peatlands) from rewetting exceed the costs of rewetting. Thus, rewetting peatlands at a river-basin scale can be considered technically and economically efficient measures towards sustainable management of agricultural landscapes. The novel methodology applied in this study can be used when valuing trade-offs between the rewetting of drained peatlands and leaving them drained for the uncertain future of wetland agriculture.


Asunto(s)
Ecosistema , Agua , Humanos , Ríos , Suelo , Humedales
2.
Sci Total Environ ; 785: 147276, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-33957594

RESUMEN

Ground- and surface-water-fed peatlands (i.e., fens) of temperate Europe face high anthropogenic nutrient loads from atmospheric deposition, agricultural catchment areas, and from peat decomposition, if drained. As a result, nitrogen loads may exceed a fen's natural nutrient removal capacity, leading to increased eutrophication of adjacent water bodies. Therefore, it is important to address possible means to decrease a fen's nutrient load, including nutrient uptake by fen plants. To assess how much fen plants can contribute to nutrient removal by uptake, nutrient stocks of above- and below-ground biomass need to be quantified. Therefore, we investigated nitrogen, phosphorous, and potassium uptake capacities of sedges (Carex species), which are common dominants in fen plant communities. We grew specimens of five Carex species with varying preferences in nutrient availability under controlled, different nutrient levels. We show that Carex above-ground biomass harvest can remove up to one third of a system's total nitrogen even at high loads of about 40 g nitrogen m-2. Species-specific differences in biomass production, rather than preferences in nutrient availability under natural conditions, were drivers of standing nutrient stocks: Highly productive species, i.e., C. acutiformis and C. rostrata, had highest nutrient standing stocks across all nutrient levels. Amounts of nutrients stored in shoots increased almost linearly with increasing nutrient levels, whereas below-ground nutrient stocks species-specifically increased, saturated, or decreased, with increasing nutrient levels. As a rough estimate, depending on the species, 6-16 cycles of annual above-ground harvest would suffice to decrease nitrogen concentrations from the highest to the lowest level used in this study. Overall, our results indicate that Carex biomass harvest can be an efficient means to counteract anthropogenic nitrogen eutrophication in fens.


Asunto(s)
Carex (Planta) , Biomasa , Ecosistema , Europa (Continente) , Eutrofización , Nitrógeno/análisis , Nutrientes , Fósforo
3.
Sci Total Environ ; 747: 141102, 2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-32795788

RESUMEN

Paludiculture, sustainable and climate-smart land use of formerly drained, rewetted organic soils, can produce significant biomass in peatlands whilst potentially restoring several additional wetland services. However, the site conditions that allow maximum biomass production and nutrient removal by paludiculture crops have rarely been studied. We studied the relationship between soil characteristics, including plant-available nutrients, peak biomass, stand age, harvest period, and nutrient removal potential for two important paludiculture species, Typha latifolia and Phragmites australis, on rewetted peat and mineral soils in a large-scale European survey. T. latifolia and P. australis were able to produce an aboveground peak biomass of 10-30 t dry matter ha-1 y-1 and absorbed significant amounts of carbon, nitrogen, phosphorus, and potassium in stands older than 3 years. They were able to grow in a wide range of abiotic soil conditions. Low N:P ratios (5-9) and low N content (< 2%) in T. latifolia tissue suggest N limitation, but P uptake was still surprisingly high. P. australis had higher N:P ratios (8-25) and was less responsive to nutrients, suggesting a higher nutrient use efficiency. However, both species could still produce significant biomass at lower nutrient loads and in winter, when water content was low and nutrient removal still reasonable. Based on this European wetland survey, paludiculture holds a great potential to combine peat preservation, water purification, nutrient removal, and a high biomass production. Paludicrops take up substantial amounts of nutrients, and both summer and winter harvests provide an effective way to sequester carbon in a range of high-valued biomass products and to control nutrient effluxes from rewetted sites at the landscape scale.


Asunto(s)
Typhaceae , Biomasa , Minerales , Nitrógeno/análisis , Nutrientes , Fósforo , Poaceae , Suelo , Humedales
4.
Sci Total Environ ; 727: 138709, 2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32334232

RESUMEN

Wetland buffer zones (WBZs) are riparian areas that form a transition between terrestrial and aquatic environments and are well-known to remove agricultural water pollutants such as nitrogen (N) and phosphorus (P). This review attempts to merge and compare data on the nutrient load, nutrient loss and nutrient removal and/or retention from multiple studies of various WBZs termed as riparian mineral soil wetlands, groundwater-charged peatlands (i.e. fens) and floodplains. Two different soil types ('organic' and 'mineral'), four different main water sources ('groundwater', 'precipitation', 'surface runoff/drain discharge', and 'river inundation') and three different vegetation classes ('arboraceous', 'herbaceous' and 'aerenchymous') were considered separately for data analysis. The studied WBZs are situated within the temperate and continental climatic regions that are commonly found in northern-central Europe, northern USA and Canada. Surprisingly, only weak differences for the nutrient removal/retention capability were found if the three WBZ types were directly compared. The results of our study reveal that for example the nitrate retention efficiency of organic soils (53 ± 28%; mean ± sd) is only slightly higher than that of mineral soils (50 ± 32%). Variance in load had a stronger influence than soil type on the N retention in WBZs. However, organic soils in fens tend to be sources of dissolved organic N and soluble reactive P, particularly when the fens have become degraded due to drainage and past agricultural usage. The detailed consideration of water sources indicated that average nitrate removal efficiencies were highest for ground water (76 ± 25%) and lowest for river water (35 ± 24%). No significant pattern for P retention emerged; however, the highest absolute removal appeared if the P source was river water. The harvesting of vegetation will minimise potential P loss from rewetted WBZs and plant biomass yield may promote circular economy value chains and provide compensation to land owners for restored land now unsuitable for conventional farming.


Asunto(s)
Fósforo/análisis , Humedales , Canadá , Europa (Continente) , Hidrología , Nitrógeno/análisis , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...