Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Virol ; 93(16)2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31167913

RESUMEN

Middle East respiratory syndrome coronavirus (MERS-CoV) uses the S1B domain of its spike protein to bind to dipeptidyl peptidase 4 (DPP4), its functional receptor, and its S1A domain to bind to sialic acids. The tissue localization of DPP4 in humans, bats, camelids, pigs, and rabbits generally correlates with MERS-CoV tropism, highlighting the role of DPP4 in virus pathogenesis and transmission. However, MERS-CoV S1A does not indiscriminately bind to all α2,3-sialic acids, and the species-specific binding and tissue distribution of these sialic acids in different MERS-CoV-susceptible species have not been investigated. We established a novel method to detect these sialic acids on tissue sections of various organs of different susceptible species by using nanoparticles displaying multivalent MERS-CoV S1A We found that the nanoparticles specifically bound to the nasal epithelial cells of dromedary camels, type II pneumocytes in human lungs, and the intestinal epithelial cells of common pipistrelle bats. Desialylation by neuraminidase abolished nanoparticle binding and significantly reduced MERS-CoV infection in primary susceptible cells. In contrast, S1A nanoparticles did not bind to the intestinal epithelium of serotine bats and frugivorous bat species, nor did they bind to the nasal epithelium of pigs and rabbits. Both pigs and rabbits have been shown to shed less infectious virus than dromedary camels and do not transmit the virus via either contact or airborne routes. Our results depict species-specific colocalization of MERS-CoV entry and attachment receptors, which may be relevant in the transmission and pathogenesis of MERS-CoV.IMPORTANCE MERS-CoV uses the S1B domain of its spike protein to attach to its host receptor, dipeptidyl peptidase 4 (DPP4). The tissue localization of DPP4 has been mapped in different susceptible species. On the other hand, the S1A domain, the N-terminal domain of this spike protein, preferentially binds to several glycotopes of α2,3-sialic acids, the attachment factor of MERS-CoV. Here we show, using a novel method, that the S1A domain specifically binds to the nasal epithelium of dromedary camels, alveolar epithelium of humans, and intestinal epithelium of common pipistrelle bats. In contrast, it does not bind to the nasal epithelium of pigs or rabbits, nor does it bind to the intestinal epithelium of serotine bats and frugivorous bat species. This finding supports the importance of the S1A domain in MERS-CoV infection and tropism, suggests its role in transmission, and highlights its potential use as a component of novel vaccine candidates.


Asunto(s)
Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/virología , Coronavirus del Síndrome Respiratorio de Oriente Medio/fisiología , Receptores Virales/metabolismo , Internalización del Virus , Animales , Camelus , Línea Celular , Quirópteros , Células Epiteliales/metabolismo , Células Epiteliales/virología , Especificidad del Huésped , Humanos , Membrana Mucosa/metabolismo , Membrana Mucosa/patología , Membrana Mucosa/virología , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Conejos , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Porcinos
2.
Viruses ; 11(4)2019 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-31022948

RESUMEN

Middle East respiratory syndrome coronavirus (MERS-CoV) transmission from dromedaries to humans has resulted in major outbreaks in the Middle East. Although some other livestock animal species have been shown to be susceptible to MERS-CoV, it is not fully understood why the spread of the virus in these animal species has not been observed in the field. In this study, we used rabbits to further characterize the transmission potential of MERS-CoV. In line with the presence of MERS-CoV receptor in the rabbit nasal epithelium, high levels of viral RNA were shed from the nose following virus inoculation. However, unlike MERS-CoV-infected dromedaries, these rabbits did not develop clinical manifestations including nasal discharge and did shed only limited amounts of infectious virus from the nose. Consistently, no transmission by contact or airborne routes was observed in rabbits. Our data indicate that despite relatively high viral RNA levels produced, low levels of infectious virus are excreted in the upper respiratory tract of rabbits as compared to dromedary camels, thus resulting in a lack of viral transmission.


Asunto(s)
Infecciones por Coronavirus/transmisión , Coronavirus del Síndrome Respiratorio de Oriente Medio/fisiología , Nariz/virología , Conejos/virología , Organismos Libres de Patógenos Específicos , Animales , Anticuerpos Antivirales/sangre , Camelus/virología , Infecciones por Coronavirus/virología , Reservorios de Enfermedades/virología , Femenino , Masculino , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , ARN Viral/análisis , Sistema Respiratorio/virología , Esparcimiento de Virus
3.
Viruses ; 11(3)2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30893947

RESUMEN

Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic pathogen that causes respiratory infection in humans, ranging from asymptomatic to severe pneumonia. In dromedary camels, the virus only causes a mild infection but it spreads efficiently between animals. Differences in the behavior of the virus observed between individuals, as well as between humans and dromedary camels, highlight the role of host factors in MERS-CoV pathogenesis and transmission. One of these host factors, the MERS-CoV receptor dipeptidyl peptidase-4 (DPP4), may be a critical determinant because it is variably expressed in MERS-CoV-susceptible species as well as in humans. This could partially explain inter- and intraspecies differences in the tropism, pathogenesis, and transmissibility of MERS-CoV. In this review, we explore the role of DPP4 and other host factors in MERS-CoV transmission and pathogenesis-such as sialic acids, host proteases, and interferons. Further characterization of these host determinants may potentially offer novel insights to develop intervention strategies to tackle ongoing outbreaks.


Asunto(s)
Infecciones por Coronavirus/transmisión , Interacciones Huésped-Patógeno , Coronavirus del Síndrome Respiratorio de Oriente Medio/patogenicidad , Infecciones del Sistema Respiratorio/transmisión , Tropismo Viral , Animales , Camelus/virología , Quirópteros/virología , Dipeptidil Peptidasa 4/metabolismo , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/fisiología , Infecciones del Sistema Respiratorio/virología , Replicación Viral
4.
Sci Adv ; 4(8): eaas9667, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30101189

RESUMEN

Middle East respiratory syndrome coronavirus (MERS-CoV) continues to cause outbreaks in humans as a result of spillover events from dromedaries. In contrast to humans, MERS-CoV-exposed dromedaries develop only very mild infections and exceptionally potent virus-neutralizing antibody responses. These strong antibody responses may be caused by affinity maturation as a result of repeated exposure to the virus or by the fact that dromedaries-apart from conventional antibodies-have relatively unique, heavy chain-only antibodies (HCAbs). These HCAbs are devoid of light chains and have long complementarity-determining regions with unique epitope binding properties, allowing them to recognize and bind with high affinity to epitopes not recognized by conventional antibodies. Through direct cloning and expression of the variable heavy chains (VHHs) of HCAbs from the bone marrow of MERS-CoV-infected dromedaries, we identified several MERS-CoV-specific VHHs or nanobodies. In vitro, these VHHs efficiently blocked virus entry at picomolar concentrations. The selected VHHs bind with exceptionally high affinity to the receptor binding domain of the viral spike protein. Furthermore, camel/human chimeric HCAbs-composed of the camel VHH linked to a human Fc domain lacking the CH1 exon-had an extended half-life in the serum and protected mice against a lethal MERS-CoV challenge. HCAbs represent a promising alternative strategy to develop novel interventions not only for MERS-CoV but also for other emerging pathogens.


Asunto(s)
Anticuerpos Neutralizantes/administración & dosificación , Anticuerpos Antivirales/administración & dosificación , Infecciones por Coronavirus/prevención & control , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Internalización del Virus/efectos de los fármacos , Animales , Anticuerpos Neutralizantes/biosíntesis , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/biosíntesis , Anticuerpos Antivirales/inmunología , Camelus , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Femenino , Humanos , Masculino , Ratones , Pruebas de Neutralización , Unión Proteica , Anticuerpos de Dominio Único
5.
Clin Infect Dis ; 66(1): 45-53, 2018 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-29020176

RESUMEN

Background: Middle East respiratory syndrome coronavirus (MERS-CoV) causes pneumonia with a relatively high case fatality rate in humans. Smokers and chronic obstructive pulmonary disease (COPD) patients have been reported to be more susceptible to MERS-CoV infection. Here, we determined the expression of MERS-CoV receptor, dipeptidyl peptidase IV (DPP4), in lung tissues of smokers without airflow limitation and COPD patients in comparison to nonsmoking individuals (never-smokers). Methods: DPP4 expression was measured in lung tissue of lung resection specimens of never-smokers, smokers without airflow limitation, COPD GOLD stage II patients and in lung explants of end-stage COPD patients. Both control subjects and COPD patients were well phenotyped and age-matched. The mRNA expression was determined using qRT-PCR and protein expression was quantified using immunohistochemistry. Results: In smokers and subjects with COPD, both DPP4 mRNA and protein expression were significantly higher compared to never-smokers. Additionally, we found that both DPP4 mRNA and protein expression were inversely correlated with lung function and diffusing capacity parameters. Conclusions: We provide evidence that DPP4 is upregulated in the lungs of smokers and COPD patients, which could partially explain why these individuals are more susceptible to MERS-CoV infection. These data also highlight a possible role of DPP4 in COPD pathogenesis.


Asunto(s)
Dipeptidil Peptidasa 4/análisis , Pulmón/patología , Enfermedad Pulmonar Obstructiva Crónica/patología , Receptores Virales/análisis , Fumar/efectos adversos , Regulación hacia Arriba , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Encuestas y Cuestionarios
6.
Proc Natl Acad Sci U S A ; 114(40): E8508-E8517, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28923942

RESUMEN

Middle East respiratory syndrome coronavirus (MERS-CoV) targets the epithelial cells of the respiratory tract both in humans and in its natural host, the dromedary camel. Virion attachment to host cells is mediated by 20-nm-long homotrimers of spike envelope protein S. The N-terminal subunit of each S protomer, called S1, folds into four distinct domains designated S1A through S1D Binding of MERS-CoV to the cell surface entry receptor dipeptidyl peptidase 4 (DPP4) occurs via S1B We now demonstrate that in addition to DPP4, MERS-CoV binds to sialic acid (Sia). Initially demonstrated by hemagglutination assay with human erythrocytes and intact virus, MERS-CoV Sia-binding activity was assigned to S subdomain S1A When multivalently displayed on nanoparticles, S1 or S1A bound to human erythrocytes and to human mucin in a strictly Sia-dependent fashion. Glycan array analysis revealed a preference for α2,3-linked Sias over α2,6-linked Sias, which correlates with the differential distribution of α2,3-linked Sias and the predominant sites of MERS-CoV replication in the upper and lower respiratory tracts of camels and humans, respectively. Binding is hampered by Sia modifications such as 5-N-glycolylation and (7,)9-O-acetylation. Depletion of cell surface Sia by neuraminidase treatment inhibited MERS-CoV entry of Calu-3 human airway cells, thus providing direct evidence that virus-Sia interactions may aid in virion attachment. The combined observations lead us to propose that high-specificity, low-affinity attachment of MERS-CoV to sialoglycans during the preattachment or early attachment phase may form another determinant governing the host range and tissue tropism of this zoonotic pathogen.


Asunto(s)
Infecciones por Coronavirus/metabolismo , Coronavirus del Síndrome Respiratorio de Oriente Medio/patogenicidad , Polisacáridos/metabolismo , Receptores Virales/metabolismo , Ácidos Siálicos/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Animales , Camelus , Infecciones por Coronavirus/virología , Dipeptidil Peptidasa 4/genética , Dipeptidil Peptidasa 4/metabolismo , Humanos , Mucinas , Glicoproteína de la Espiga del Coronavirus/genética , Acoplamiento Viral
7.
mSphere ; 2(4)2017.
Artículo en Inglés | MEDLINE | ID: mdl-28815211

RESUMEN

Recent Zika virus (ZIKV) infections have been associated with a range of neurological complications, in particular congenital microcephaly. Human neural progenitor cells (hNPCs) are thought to play an important role in the pathogenesis of microcephaly, and experimental ZIKV infection of hNPCs has been shown to induce cell death. However, the infection efficiency and rate of cell death have varied between studies, which might be related to intrinsic differences between African and Asian lineage ZIKV strains. Therefore, we determined the replication kinetics, including infection efficiency, burst size, and ability to induce cell death, of two Asian and two African ZIKV strains. African ZIKV strains replicated to higher titers in Vero cells, human glioblastoma (U87MG) cells, human neuroblastoma (SK-N-SH) cells, and hNPCs than Asian ZIKV strains. Furthermore, infection with Asian ZIKV strains did not result in significant cell death early after infection, whereas infection with African ZIKV strains resulted in high percentages of cell death in hNPCs. The differences between African and Asian lineage ZIKV strains highlight the importance of including relevant ZIKV strains to study the pathogenesis of congenital microcephaly and caution against extrapolation of experimental data obtained using historical African ZIKV strains to the current outbreak. Finally, the fact that Asian ZIKV strains infect only a minority of cells with a relatively low burst size together with the lack of early cell death induction might contribute to its ability to cause chronic infections within the central nervous system (CNS). IMPORTANCE The mechanism by which ZIKV causes a range of neurological complications, especially congenital microcephaly, is not well understood. The fact that congenital microcephaly is associated with Asian lineage ZIKV strains raises the question of why this was not discovered earlier. One possible explanation is that Asian and African ZIKV strains differ in their abilities to infect cells of the CNS and to cause neurodevelopmental problems. Here, we show that Asian ZIKV strains infect and induce cell death in human neural progenitor cells-which are important target cells in the development of congenital microcephaly-less efficiently than African ZIKV strains. These features of Asian ZIKV strains likely contribute to their ability to cause chronic infections, often observed in congenital microcephaly cases. It is therefore likely that phenotypic differences between ZIKV strains could be, at least in part, responsible for the ability of Asian ZIKV strains to cause congenital microcephaly.

8.
One Health ; 3: 11-16, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28616497

RESUMEN

Middle East respiratory syndrome coronavirus (MERS-CoV) still causes outbreaks despite public awareness and implementation of health care measures, such as rapid viral diagnosis and patient quarantine. Here we describe the current epidemiological picture of MERS-CoV, focusing on humans and animals affected by this virus and propose specific intervention strategies that would be appropriate to control MERS-CoV. One-third of MERS-CoV patients develop severe lower respiratory tract infection and succumb to a fatal outcome; these patients would require effective therapeutic antiviral therapy. Because of the lack of such intervention strategies, supportive care is the best that can be offered at the moment. Limiting viral spread from symptomatic human cases to health care workers and family members, on the other hand, could be achieved through prophylactic administration of MERS-CoV neutralizing antibodies and vaccines. To ultimately prevent spread of the virus into the human population, however, vaccination of dromedary camels - currently the only confirmed animal host for MERS-CoV - may be the best option to achieve a sustained drop in human MERS cases in time. In the end, a One Health approach combining all these different efforts is needed to tackle this zoonotic outbreak.

9.
Sci Rep ; 7(1): 1193, 2017 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-28446791

RESUMEN

Middle East respiratory syndrome coronavirus (MERS-CoV) has been shown to infect both humans and dromedary camels using dipeptidyl peptidase-4 (DPP4) as its receptor. The distribution of DPP4 in the respiratory tract tissues of humans and camels reflects MERS-CoV tropism. Apart from dromedary camels, insectivorous bats are suggested as another natural reservoir for MERS-like-CoVs. In order to gain insight on the tropism of these viruses in bats, we studied the DPP4 distribution in the respiratory and extra-respiratory tissues of two frugivorous bat species (Epomophorus gambianus and Rousettus aegyptiacus) and two insectivorous bat species (Pipistrellus pipistrellus and Eptesicus serotinus). In the frugivorous bats, DPP4 was present in epithelial cells of both the respiratory and the intestinal tract, similar to what has been reported for camels and humans. In the insectivorous bats, however, DPP4 expression in epithelial cells of the respiratory tract was almost absent. The preferential expression of DPP4 in the intestinal tract of insectivorous bats, suggests that transmission of MERS-like-CoVs mainly occurs via the fecal-oral route. Our results highlight differences in the distribution of DPP4 expression among MERS-CoV susceptible species, which might influence variability in virus tropism, pathogenesis and transmission route.


Asunto(s)
Quirópteros , Células Epiteliales/química , Mucosa Intestinal/química , Coronavirus del Síndrome Respiratorio de Oriente Medio/fisiología , Receptores Virales/análisis , Mucosa Respiratoria/química , Tropismo Viral , Animales , Receptores de Coronavirus
10.
Emerg Infect Dis ; 23(2): 232-240, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27901465

RESUMEN

Middle East respiratory syndrome (MERS) cases continue to be reported, predominantly in Saudi Arabia and occasionally other countries. Although dromedaries are the main reservoir, other animal species might be susceptible to MERS coronavirus (MERS-CoV) infection and potentially serve as reservoirs. To determine whether other animals are potential reservoirs, we inoculated MERS-CoV into llamas, pigs, sheep, and horses and collected nasal and rectal swab samples at various times. The presence of MERS-CoV in the nose of pigs and llamas was confirmed by PCR, titration of infectious virus, immunohistochemistry, and in situ hybridization; seroconversion was detected in animals of both species. Conversely, in sheep and horses, virus-specific antibodies did not develop and no evidence of viral replication in the upper respiratory tract was found. These results prove the susceptibility of llamas and pigs to MERS-CoV infection. Thus, the possibility of MERS-CoV circulation in animals other than dromedaries, such as llamas and pigs, is not negligible.


Asunto(s)
Enfermedades de los Animales/epidemiología , Infecciones por Coronavirus/veterinaria , Susceptibilidad a Enfermedades , Ganado/virología , Coronavirus del Síndrome Respiratorio de Oriente Medio , Enfermedades de los Animales/diagnóstico , Enfermedades de los Animales/virología , Animales , Chlorocebus aethiops , Reservorios de Enfermedades , Ensayo de Inmunoadsorción Enzimática , Caballos , Inmunidad Humoral , Coronavirus del Síndrome Respiratorio de Oriente Medio/fisiología , Pruebas de Neutralización , Vigilancia en Salud Pública , ARN Viral , Ovinos , Porcinos , Células Vero
11.
J Virol ; 90(9): 4838-4842, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26889022

RESUMEN

Middle East respiratory syndrome coronavirus (MERS-CoV) is not efficiently transmitted between humans, but it is highly prevalent in dromedary camels. Here we report that the MERS-CoV receptor--dipeptidyl peptidase 4 (DPP4)--is expressed in the upper respiratory tract epithelium of camels but not in that of humans. Lack of DPP4 expression may be the primary cause of limited MERS-CoV replication in the human upper respiratory tract and hence restrict transmission.


Asunto(s)
Infecciones por Coronavirus/virología , Dipeptidil Peptidasa 4/genética , Regulación de la Expresión Génica , Coronavirus del Síndrome Respiratorio de Oriente Medio/fisiología , Receptores Virales/genética , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/virología , Animales , Camelus , Infecciones por Coronavirus/transmisión , Dipeptidil Peptidasa 4/metabolismo , Humanos , Inmunohistoquímica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores Virales/metabolismo , Replicación Viral
12.
Stem Cell Reports ; 3(4): 548-55, 2014 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-25358783

RESUMEN

Silencing of the FMR1 gene leads to fragile X syndrome, the most common cause of inherited intellectual disability. To study the epigenetic modifications of the FMR1 gene during silencing in time, we used fibroblasts and induced pluripotent stem cells (iPSCs) of an unmethylated full mutation (uFM) individual with normal intelligence. The uFM fibroblast line carried an unmethylated FMR1 promoter region and expressed normal to slightly increased FMR1 mRNA levels. The FMR1 expression in the uFM line corresponds with the increased H3 acetylation and H3K4 methylation in combination with a reduced H3K9 methylation. After reprogramming, the FMR1 promoter region was methylated in all uFM iPSC clones. Two clones were analyzed further and showed a lack of FMR1 expression, whereas the presence of specific histone modifications also indicated a repressed FMR1 promoter. In conclusion, these findings demonstrate that the standard reprogramming procedure leads to epigenetic silencing of the fully mutated FMR1 gene.


Asunto(s)
Metilación de ADN , Fibroblastos/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Silenciador del Gen , Células Madre Pluripotentes Inducidas/metabolismo , Mutación , Adolescente , Animales , Estudios de Casos y Controles , Línea Celular , Reprogramación Celular , Niño , Preescolar , Femenino , Fibroblastos/citología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Histonas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Masculino , Ratones , Regiones Promotoras Genéticas , ARN Mensajero/genética , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...