Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Aging Cell ; 19(11): e13166, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33049094

RESUMEN

Mitochondrial dysfunction is frequently associated with impairment in metabolic homeostasis and insulin action, and is thought to underlie cellular aging. However, it is unclear whether mitochondrial dysfunction is a cause or consequence of insulin resistance in humans. To determine the impact of intrinsic mitochondrial dysfunction on metabolism and insulin action, we performed comprehensive metabolic phenotyping of the polymerase gamma (PolG) D257A "mutator" mouse, a model known to accumulate supraphysiological mitochondrial DNA (mtDNA) point mutations. We utilized the heterozygous PolG mutator mouse (PolG+/mut ) because it accumulates mtDNA point mutations ~ 500-fold > wild-type mice (WT), but fails to develop an overt progeria phenotype, unlike PolGmut/mut animals. To determine whether mtDNA point mutations induce metabolic dysfunction, we examined male PolG+/mut mice at 6 and 12 months of age during normal chow feeding, after 24-hr starvation, and following high-fat diet (HFD) feeding. No marked differences were observed in glucose homeostasis, adiposity, protein/gene markers of metabolism, or oxygen consumption in muscle between WT and PolG+/mut mice during any of the conditions or ages studied. However, proteomic analyses performed on isolated mitochondria from 12-month-old PolG+/mut mouse muscle revealed alterations in the expression of mitochondrial ribosomal proteins, electron transport chain components, and oxidative stress-related factors compared with WT. These findings suggest that mtDNA point mutations at levels observed in mammalian aging are insufficient to disrupt metabolic homeostasis and insulin action in male mice.


Asunto(s)
ADN Mitocondrial/genética , Mitocondrias Hepáticas/metabolismo , Mitocondrias Musculares/metabolismo , Mutación Puntual , Animales , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Homeostasis , Ratones , Mitocondrias Hepáticas/genética , Mitocondrias Musculares/genética , Nutrientes , Inanición/genética , Inanición/metabolismo
2.
Exp Gerontol ; 106: 125-131, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29486228

RESUMEN

Age-induced mitochondrial DNA deletion mutations may underlie cell loss and tissue aging. Rapamycin extends mouse lifespan and modulates mitochondrial quality control. We hypothesized that reduced deletion mutation abundance may contribute to rapamycin's life extension effects. To test this hypothesis, genetically heterogeneous male and female mice were treated with rapamycin, compounded in chow at 14 or 42 ppm, from 9 months to 22 months of age. Mice under a 40% dietary restriction were included as a control known to protect mtDNA quality. To determine if chronic rapamycin treatment affects mitochondrial DNA quality, we assayed mtDNA deletion frequency and electron transport chain deficient fiber abundances in mouse quadriceps muscle. At 42 ppm rapamycin, we observed a 57% decrease in deletion frequency, a 2.8-fold decrease in ETC deficient fibers, and a 3.4-fold increase in the number of mice without electron transport chain deficient fibers. We observed a similar trend with the 14 ppm dose. DR significantly decreased ETC deficient fiber abundances with a trend toward lower mtDNA deletion frequency. The effects of rapamycin treatment on mitochondrial DNA quality were greatest in females at the highest dose. Rapamycin treatment at 14 ppm did not affect muscle mass or function. Dietary restriction also reduced deletion frequency and ETC deficient fibers. These data support the concept that the lifespan extending effects of rapamycin treatment result from enhanced mitochondrial DNA quality.


Asunto(s)
Envejecimiento/efectos de los fármacos , ADN Mitocondrial/genética , Mitocondrias Musculares/metabolismo , Músculo Cuádriceps/patología , Sirolimus/farmacología , Animales , Restricción Calórica , Complejo IV de Transporte de Electrones/metabolismo , Femenino , Masculino , Ratones , Eliminación de Secuencia , Succinato Deshidrogenasa/metabolismo
3.
J Gerontol A Biol Sci Med Sci ; 72(10): 1327-1333, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28460005

RESUMEN

Definitive quantitation of mitochondrial DNA (mtDNA) and mtDNA deletion mutation abundances would help clarify the role of mtDNA instability in aging. To more accurately quantify mtDNA, we applied the emerging technique of digital polymerase chain reaction to individual muscle fibers and muscle homogenates from aged rodents. Individual fiber mtDNA content correlated with fiber type and decreased with age. We adapted a digital polymerase chain reaction deletion assay that was accurate in mixing experiments to a mutation frequency of 0.03% and quantitated an age-induced increase in deletion frequency from rat muscle homogenates. Importantly, the deletion frequency measured in muscle homogenates strongly correlated with electron transport chain-deficient fiber abundance determined by histochemical analyses. These data clarify the temporal accumulation of mtDNA deletions that lead to electron chain-deficient fibers, a process culminating in muscle fiber loss.


Asunto(s)
ADN Mitocondrial/metabolismo , Mitocondrias Musculares/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Reacción en Cadena de la Polimerasa/métodos , Factores de Edad , Animales , ADN Mitocondrial/genética , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Endogámicas F344 , Eliminación de Secuencia
4.
Aging Cell ; 15(6): 1132-1139, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27561813

RESUMEN

With age, somatically derived mitochondrial DNA (mtDNA) deletion mutations arise in many tissues and species. In skeletal muscle, deletion mutations clonally accumulate along the length of individual fibers. At high intrafiber abundances, these mutations disrupt individual cell respiration and are linked to the activation of apoptosis, intrafiber atrophy, breakage, and necrosis, contributing to fiber loss. This sequence of molecular and cellular events suggests a putative mechanism for the permanent loss of muscle fibers with age. To test whether mtDNA deletion mutation accumulation is a significant contributor to the fiber loss observed in aging muscle, we pharmacologically induced deletion mutation accumulation. We observed a 1200% increase in mtDNA deletion mutation-containing electron transport chain-deficient muscle fibers, an 18% decrease in muscle fiber number and 22% worsening of muscle mass loss. These data affirm the hypothesized role for mtDNA deletion mutation in the etiology of muscle fiber loss at old age.

5.
Sci Transl Med ; 8(334): 334ra54, 2016 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-27075628

RESUMEN

Impaired estrogen receptor α (ERα) action promotes obesity and metabolic dysfunction in humans and mice; however, the mechanisms underlying these phenotypes remain unknown. Considering that skeletal muscle is a primary tissue responsible for glucose disposal and oxidative metabolism, we established that reduced ERα expression in muscle is associated with glucose intolerance and adiposity in women and female mice. To test this relationship, we generated muscle-specific ERα knockout (MERKO) mice. Impaired glucose homeostasis and increased adiposity were paralleled by diminished muscle oxidative metabolism and bioactive lipid accumulation in MERKO mice. Aberrant mitochondrial morphology, overproduction of reactive oxygen species, and impairment in basal and stress-induced mitochondrial fission dynamics, driven by imbalanced protein kinase A-regulator of calcineurin 1-calcineurin signaling through dynamin-related protein 1, tracked with reduced oxidative metabolism in MERKO muscle. Although muscle mitochondrial DNA (mtDNA) abundance was similar between the genotypes, ERα deficiency diminished mtDNA turnover by a balanced reduction in mtDNA replication and degradation. Our findings indicate the retention of dysfunctional mitochondria in MERKO muscle and implicate ERα in the preservation of mitochondrial health and insulin sensitivity as a defense against metabolic disease in women.


Asunto(s)
Receptor alfa de Estrógeno/metabolismo , Homeostasis/efectos de los fármacos , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Animales , Autofagia/efectos de los fármacos , Proteínas de Unión al Calcio , Replicación del ADN/efectos de los fármacos , ADN Mitocondrial/genética , Dinaminas/metabolismo , Femenino , Eliminación de Gen , Glucosa/metabolismo , Humanos , Insulina/farmacología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Ratones , Ratones Noqueados , Mitocondrias Musculares/efectos de los fármacos , Dinámicas Mitocondriales/efectos de los fármacos , Proteínas Musculares/metabolismo , Músculo Esquelético/efectos de los fármacos , Especificidad de Órganos/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA