Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nanotechnology ; 22(32): 325201, 2011 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-21757795

RESUMEN

A simple one-stage solution-based method was developed to produce graphene nanoribbons by sonicating graphite powder in organic solutions with polymer surfactant. The graphene nanoribbons were deposited on a silicon substrate, and characterized by Raman spectroscopy and atomic force microscopy. Single-layer and few-layer graphene nanoribbons with a width ranging from sub-10 nm to tens of nanometers and lengths ranging from hundreds of nanometers to 1 µm were routinely observed. The electrical transport properties of individual graphene nanoribbons were measured in both the back-gate and polymer-electrolyte top-gate configurations. The mobility of the graphene nanoribbons was found to be over an order of magnitude higher when measured in the latter than in the former configuration (without the polymer-electrolyte), which can be attributed to the screening of the charged impurities by the counter ions in the polymer-electrolyte. This finding suggests that the charge transport in these solution produced graphene nanoribbons is largely limited by charge impurity scattering.

2.
Nanotechnology ; 22(26): 265201, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21576804

RESUMEN

We have fabricated suspended few-layer (1-3 layers) graphene nanoribbon field-effect transistors from unzipped multi-wall carbon nanotubes. Electrical transport measurements show that current annealing effectively removes the impurities on the suspended graphene nanoribbons, uncovering the intrinsic ambipolar transfer characteristic of graphene. Further increasing the annealing current creates a narrow constriction in the ribbon, leading to the formation of a large bandgap and subsequent high on/off ratio (which can exceed 10(4)). Such fabricated devices are thermally and mechanically stable: repeated thermal cycling has little effect on their electrical properties. This work shows for the first time that ambipolar field-effect characteristics and high on/off ratios at room temperature can be achieved in relatively wide graphene nanoribbons (15-50 nm) by controlled current annealing.

3.
Phys Rev Lett ; 104(16): 167202, 2010 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-20482077

RESUMEN

Using in situ magneto-optical Kerr effect measurements and phenomenological modeling, we study the tunability in both the magnetization anisotropy and magnetic coupling of Fe nanodots on a curved Cu(111) substrate with varying vicinity. We observe that, as the terrace width w decreases, the magnetization anisotropy increases monotonically, faster when w is smaller than the nanodot size d. In contrast, the magnetic coupling strength also increases until w approximately d, after which it decreases steeply. These striking observations can be rationalized by invoking the counterintuitive dimensionality variation of the surface electrons mediating the interdot coupling: the electrons are confined to be one dimensional (1D) when w > or = d, but become quasi-2D when w < d due to enhanced electron spillover across the steps bridged by the nanodots.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA