Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(6): 2821-2835, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38348970

RESUMEN

A key attribute of some long noncoding RNAs (lncRNAs) is their ability to regulate expression of neighbouring genes in cis. However, such 'cis-lncRNAs' are presently defined using ad hoc criteria that, we show, are prone to false-positive predictions. The resulting lack of cis-lncRNA catalogues hinders our understanding of their extent, characteristics and mechanisms. Here, we introduce TransCistor, a framework for defining and identifying cis-lncRNAs based on enrichment of targets amongst proximal genes. TransCistor's simple and conservative statistical models are compatible with functionally defined target gene maps generated by existing and future technologies. Using transcriptome-wide perturbation experiments for 268 human and 134 mouse lncRNAs, we provide the first large-scale survey of cis-lncRNAs. Known cis-lncRNAs are correctly identified, including XIST, LINC00240 and UMLILO, and predictions are consistent across analysis methods, perturbation types and independent experiments. We detect cis-activity in a minority of lncRNAs, primarily involving activators over repressors. Cis-lncRNAs are detected by both RNA interference and antisense oligonucleotide perturbations. Mechanistically, cis-lncRNA transcripts are observed to physically associate with their target genes and are weakly enriched with enhancer elements. In summary, TransCistor establishes a quantitative foundation for cis-lncRNAs, opening a path to elucidating their molecular mechanisms and biological significance.


Asunto(s)
Biología Computacional , Técnicas Genéticas , ARN Largo no Codificante , Animales , Humanos , Ratones , ARN Largo no Codificante/genética , ARN Largo no Codificante/aislamiento & purificación , Factores de Transcripción/genética , Transcriptoma , Programas Informáticos/normas , Biología Computacional/métodos
2.
J Fish Dis ; 46(9): 987-999, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37294659

RESUMEN

Nodular gill disease (NGD) is an infectious condition characterized by proliferative gill lesions leading to respiratory problems, oxygen deficiency and mortality in fish. Globally, NGD primarily impacts freshwater salmonids in intensive aquaculture systems. In recent years, numerous outbreaks of severe gill disease have affected more than half of the larger rainbow trout (Oncorhynchus mykiss) farms in Switzerland, mainly during spring and early summer. Mortality has reached up to 50% in cases where no treatment was administered. Freshwater amoeba are the presumed aetiologic agent of NGD. The gross gill score (GS) categorising severity of gill pathology is a valuable first-line diagnostic tool aiding fish farmers in identifying and quantifying amoebic gill disease (AGD) in farmed marine salmonids. In this study, the GS was adapted to the NGD outbreak in farmed trout in Switzerland. In addition to scoring disease severity, gill swabs from NGD-affected rainbow trout were sampled and amoeba were cultured from these swabs. Morphologic and molecular methods identified six amoeba strains: Cochliopodium sp., Naegleria sp., Vannella sp., Ripella sp., Saccamoeba sp. and Mycamoeba sp. However, the importance of the different amoeba species for the onset and progression of NGD still has to be evaluated. This paper presents the first description of NGD with associated amoeba infection in farmed rainbow trout in Switzerland.


Asunto(s)
Amoeba , Enfermedades de los Peces , Oncorhynchus mykiss , Animales , Branquias/patología , Suiza/epidemiología , Enfermedades de los Peces/patología , Acuicultura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...