Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS Genet ; 19(6): e1010802, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37307281

RESUMEN

The formation of long-term memories requires changes in the transcriptional program and de novo protein synthesis. One of the critical regulators for long-term memory (LTM) formation and maintenance is the transcription factor CREB. Genetic studies have dissected the requirement of CREB activity within memory circuits, however less is known about the genetic mechanisms acting downstream of CREB and how they may contribute defining LTM phases. To better understand the downstream mechanisms, we here used a targeted DamID approach (TaDa). We generated a CREB-Dam fusion protein using the fruit fly Drosophila melanogaster as model. Expressing CREB-Dam in the mushroom bodies (MBs), a brain center implicated in olfactory memory formation, we identified genes that are differentially expressed between paired and unpaired appetitive training paradigm. Of those genes we selected candidates for an RNAi screen in which we identified genes causing increased or decreased LTM.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Animales , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Cuerpos Pedunculados/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Neuronas/metabolismo , Drosophila/metabolismo
2.
PLoS Biol ; 19(10): e3001412, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34613972

RESUMEN

Alzheimer disease (AD) is one of the main causes of age-related dementia and neurodegeneration. However, the onset of the disease and the mechanisms causing cognitive defects are not well understood. Aggregation of amyloidogenic peptides is a pathological hallmark of AD and is assumed to be a central component of the molecular disease pathways. Pan-neuronal expression of Aß42Arctic peptides in Drosophila melanogaster results in learning and memory defects. Surprisingly, targeted expression to the mushroom bodies, a center for olfactory memories in the fly brain, does not interfere with learning but accelerates forgetting. We show here that reducing neuronal excitability either by feeding Levetiracetam or silencing of neurons in the involved circuitry ameliorates the phenotype. Furthermore, inhibition of the Rac-regulated forgetting pathway could rescue the Aß42Arctic-mediated accelerated forgetting phenotype. Similar effects are achieved by increasing sleep, a critical regulator of neuronal homeostasis. Our results provide a functional framework connecting forgetting signaling and sleep, which are critical for regulating neuronal excitability and homeostasis and are therefore a promising mechanism to modulate forgetting caused by toxic Aß peptides.


Asunto(s)
Péptidos beta-Amiloides/toxicidad , Dopamina/metabolismo , Drosophila melanogaster/fisiología , Memoria/fisiología , Neuronas/fisiología , Sueño/fisiología , Animales , Encéfalo/metabolismo , Drosophila melanogaster/efectos de los fármacos , Memoria/efectos de los fármacos , Cuerpos Pedunculados/efectos de los fármacos , Cuerpos Pedunculados/metabolismo , Neuronas/efectos de los fármacos
3.
Sci Rep ; 11(1): 6795, 2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33762640

RESUMEN

Olfactory learning and conditioning in the fruit fly is typically modelled by correlation-based associative synaptic plasticity. It was shown that the conditioning of an odor-evoked response by a shock depends on the connections from Kenyon cells (KC) to mushroom body output neurons (MBONs). Although on the behavioral level conditioning is recognized to be predictive, it remains unclear how MBONs form predictions of aversive or appetitive values (valences) of odors on the circuit level. We present behavioral experiments that are not well explained by associative plasticity between conditioned and unconditioned stimuli, and we suggest two alternative models for how predictions can be formed. In error-driven predictive plasticity, dopaminergic neurons (DANs) represent the error between the predictive odor value and the shock strength. In target-driven predictive plasticity, the DANs represent the target for the predictive MBON activity. Predictive plasticity in KC-to-MBON synapses can also explain trace-conditioning, the valence-dependent sign switch in plasticity, and the observed novelty-familiarity representation. The model offers a framework to dissect MBON circuits and interpret DAN activity during olfactory learning.


Asunto(s)
Reacción de Prevención/fisiología , Drosophila/fisiología , Olfato/fisiología , Animales , Neuronas Dopaminérgicas/fisiología , Modelos Biológicos , Cuerpos Pedunculados/fisiología , Plasticidad Neuronal , Procesos Estocásticos , Sinapsis/fisiología
4.
Elife ; 72018 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-30346271

RESUMEN

Lasting changes in gene expression are critical for the formation of long-term memories (LTMs), depending on the conserved CrebB transcriptional activator. While requirement of distinct neurons in defined circuits for different learning and memory phases have been studied in detail, only little is known regarding the gene regulatory changes that occur within these neurons. We here use the fruit fly as powerful model system to study the neural circuits of CrebB-dependent appetitive olfactory LTM. We edited the CrebB locus to create a GFP-tagged CrebB conditional knockout allele, allowing us to generate mutant, post-mitotic neurons with high spatial and temporal precision. Investigating CrebB-dependence within the mushroom body (MB) circuit we show that MB α/ß and α'/ß' neurons as well as MBON α3, but not in dopaminergic neurons require CrebB for LTM. Thus, transcriptional memory traces occur in different neurons within the same neural circuit.


Asunto(s)
Apetito/fisiología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Cuerpos Pedunculados/inervación , Cuerpos Pedunculados/metabolismo , Neuronas/metabolismo , Transactivadores/metabolismo , Alelos , Animales , Técnicas de Inactivación de Genes , Memoria a Largo Plazo , Reproducibilidad de los Resultados
5.
Genetics ; 209(4): 1167-1181, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29925565

RESUMEN

Memory formation is achieved by genetically tightly controlled molecular pathways that result in a change of synaptic strength and synapse organization. While for short-term memory traces, rapidly acting biochemical pathways are in place, the formation of long-lasting memories requires changes in the transcriptional program of a cell. Although many genes involved in learning and memory formation have been identified, little is known about the genetic mechanisms required for changing the transcriptional program during different phases of long-term memory (LTM) formation. With Drosophila melanogaster as a model system, we profiled transcriptomic changes in the mushroom body-a memory center in the fly brain-at distinct time intervals during appetitive olfactory LTM formation using the targeted DamID technique. We describe the gene expression profiles during these phases and tested 33 selected candidate genes for deficits in LTM formation using RNAi knockdown. We identified 10 genes that enhance or decrease memory when knocked-down in the mushroom body. For vajk-1 and hacd1-the two strongest hits-we gained further support for their crucial role in appetitive learning and forgetting. These findings show that profiling gene expression changes in specific cell-types harboring memory traces provides a powerful entry point to identify new genes involved in learning and memory. The presented transcriptomic data may further be used as resource to study genes acting at different memory phases.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/crecimiento & desarrollo , Enoil-CoA Hidratasa/genética , Perfilación de la Expresión Génica/métodos , Memoria a Largo Plazo , Cuerpos Pedunculados/química , Animales , Animales Modificados Genéticamente/crecimiento & desarrollo , Conducta Animal , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Especificidad de Órganos , Interferencia de ARN
6.
J Vis Exp ; (74)2013 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-23629021

RESUMEN

Light acts as environmental signal to control animal behavior at various levels. The Drosophila larval nervous system is used as a unique model to answer basic questions on how light information is processed and shared between rapid and circadian behaviors. Drosophila larvae display a stereotypical avoidance behavior when exposed to light. To investigate light dependent behaviors comparably simple light-dark preference tests can be applied. In vertebrates and arthropods the neural pathways involved in sensing and processing visual inputs partially overlap with those processing photic circadian information. The fascinating question of how the light sensing system and the circadian system interact to keep behavioral outputs coordinated remains largely unexplored. Drosophila is an impacting biological model to approach these questions, due to a small number of neurons in the brain and the availability of genetic tools for neuronal manipulation. The presented light-dark preference assay allows the investigation of a range of visual behaviors including circadian control of phototaxis.


Asunto(s)
Conducta Animal/fisiología , Ritmo Circadiano/fisiología , Drosophila/fisiología , Animales , Oscuridad , Femenino , Larva , Luz , Masculino , Estimulación Luminosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...