Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Pest Manag Sci ; 78(1): 369-378, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34538023

RESUMEN

BACKGROUND: Wireworms, the soil-dwelling larvae of click beetles, are a major threat to global agricultural production. This is largely due to their generalist polyphagous feeding capabilities, extended and cryptic life cycles, and limited management options available. Although wireworms are well-documented as economically important pests in the Canadian Prairies, including Manitoba, there are gaps in knowledge on species distributions, subterranean behaviour and life cycles, feeding ecology and damage capacity, and economic thresholds for crop yield loss. RESULTS: We carried out 3 years (2018-2020) of intensive surveillance of larval populations across Manitoba. A total of 31 fields (24 in ≥ 2 consecutive years) were surveyed in early spring using standardized bait trapping approaches. Wireworms were present in 94% of surveyed sites, but the catch within fields varied year to year. While Hypnoidus bicolor predominated (94% of larvae), several other pest species were identified. We then explored the relationships between wireworm trap numbers and agro-environmental factors. The larval catch tended to decrease under conditions of low soil temperatures and increased clay content, coupled with high soil moisture and precipitation during the trapping period. Treatment and cultural methods appeared less influential; however, wheat production in either of the previous two growing seasons was associated with increased wireworm catch. Our models failed to predict a relationship between wireworm catch and crop yields, although infestations were rare in our region. CONCLUSION: Our findings better infer the risks posed by wireworms to crop production in the Canadian Prairies, and the agro-environmental factors that represent the greatest contributors to these risks. This information should be incorporated into future integrated pest management (IPM) strategies for wireworms. © 2021 Her Majesty the Queen in Right of Canada Pest Management Science © 2021 Society of Chemical Industry Reproduced with the permission of the Minister of Agriculture and Agri-Food Canada.


Asunto(s)
Escarabajos , Control de Plagas , Animales , Larva , Manitoba
2.
Pest Manag Sci ; 77(5): 2282-2291, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33421259

RESUMEN

BACKGROUND: Following banning of the pesticide lindane in most counties, wireworms (i.e., the soil-living larval stages of click beetles) have become major pests of a variety of economically important field crops. Hypnoidus bicolor is a common pest species in the Canadian Prairies. However, little is known about its life history, which impedes the development of effective integrated pest management (IPM) strategies. Population genetic approaches have the potential to assist in the development of IPM. RESULTS: We sequenced a 622-bp fragment of the COX1 gene from 326 H. bicolor wireworm and click beetles collected from 13 localities on the Canadian Prairies. Two genetically distinct (>4.66% sequence divergence) clades were identified, suggesting that they may be part of a species complex. Clade A predominated and increased in prevalence the further east samples were collected, whereas the opposite was true for clade B. Clade B appears to be comprised of two mitochondrial DNA groups, however, one group was represented by only one haplotype. Both clades were characterized by uneven gene flow among populations with low levels of regional genetic structuring. Clade A appeared to have undergone population and range expansions, which may coincide with the advent of intensive agriculture practices in the prairies. CONCLUSION: Knowledge of species composition and population structure is important for the development of effective IPM strategies but is often lacking for wireworms. Our study fills these knowledge gaps for a predominant pest species in the prairies, H. bicolor, by providing robust evidence for cryptic forms and characterizing its dispersal patterns and population dynamics. © 2021 Society of Chemical Industry.


Asunto(s)
Escarabajos , Animales , Canadá , Escarabajos/genética , Demografía , Asia Oriental , Estructuras Genéticas , Pradera
3.
Plant Dis ; 103(6): 1075-1083, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31009362

RESUMEN

Soybean (Glycine max) has become an important crop in Manitoba, Canada, with a 10-fold increase in dedicated acreage over the past decade. Given the rapid increase in production, scarce information about foliar diseases present in the province has been recorded. In order to describe the foliar pathogens affecting this legume, we harnessed next-generation sequencing (NGS) to carry out a comprehensive survey across Manitoba in 2016. Fields were sampled during the V2/3 (33 fields) and R6 (70 fields) growth stages, with at least three symptomatic leaves per field collected and subjected to RNA sequencing. We successfully detected several bacteria, fungi, and viruses known to infect soybean, including Pseudomonas savastanoi pv. glycinea, Septoria glycines, and Peronospora manshurica, as well as pathogens not previously identified in the province (e.g., Pseudomonas syringae pv. tabaci, Cercospora sojina, and Bean yellow mosaic virus). For some microorganisms, we were able to disentangle the different pathovars present and/or assemble their genome sequence. Since NGS generates data on the entire flora and fauna occupying a leaf sample, we also identified residual pathogens (i.e., pathogens of crops other than soybean) and multiple species of arthropod pests. Finally, the sequence information produced by NGS allowed for the development of polymerase chain reaction-based diagnostics for some of the most widespread and important pathogens. Although there are many benefits of using NGS for large-scale plant pathogen diagnoses, we also discuss some of the limitations of this technology.


Asunto(s)
Agricultura/métodos , Bacterias/genética , Hongos/genética , Glycine max , Secuenciación de Nucleótidos de Alto Rendimiento , Virus de Plantas/genética , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Manitoba , Glycine max/microbiología , Glycine max/virología
4.
Genome Announc ; 5(32)2017 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-28798183

RESUMEN

We present the first complete genome sequence of the tombusvirus Tobacco necrosis virus D (TNV-D) from North America, obtained from an infected soybean plant. Compared with the three other TNV-D genomes isolated from different geographic regions and host plants, its nucleotide identities were between 83% and 93%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...