Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Virulence ; : 2399792, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39239914

RESUMEN

Human CD81 and CD9 are members of the tetraspanin family of proteins characterized by a canonical structure of four transmembrane domains and two extracellular loop domains. Tetraspanins are known as molecular facilitators, which assemble and organize cell surface receptors and partner molecules forming clusters known as tetraspanin-enriched microdomains. They have been implicated to play various biological roles including an involvement in infections with microbial pathogens. Here, we demonstrate an important role of CD81 for the invasion of epithelial cells by Salmonella enterica. We show that overexpression of CD81 in HepG2 cells enhances invasion of various typhoidal and non-typhoidal Salmonella serovars. Deletion of CD81 by CRISPR/Cas9 in intestinal epithelial cells (C2BBe1 and HT29-MTX-E12) reduces S. Typhimurium invasion. In addition, the effect of human CD81 is species-specific as only human but not rat CD81 facilitates Salmonella invasion. Finally, immunofluorescence microscopy and proximity ligation assay revealed that both human tetraspanins CD81 and CD9 are recruited to the entry site of S. Typhimurium during invasion but not during adhesion to the host cell surface. Overall, we demonstrate that the human tetraspanin CD81 facilitates Salmonella invasion into epithelial host cells.

2.
Sci Rep ; 14(1): 15160, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956132

RESUMEN

In order to survive and replicate, Salmonella has evolved mechanisms to gain access to intestinal epithelial cells of the crypt. However, the impact of Salmonella Typhimurium on stem cells and progenitors, which are responsible for the ability of the intestinal epithelium to renew and protect itself, remains unclear. Given that intestinal organoids growth is sustained by stem cells and progenitors activity, we have used this model to document the effects of Salmonella Typhimurium infection on epithelial proliferation and differentiation, and compared it to an in vivo model of Salmonella infection in mice. Among gut segments, the caecum was preferentially targeted by Salmonella. Analysis of infected crypts and organoids demonstrated increased length and size, respectively. mRNA transcription profiles of infected crypts and organoids pointed to upregulated EGFR-dependent signals, associated with a decrease in secretory cell lineage differentiation. To conclude, we show that organoids are suited to mimic the impact of Salmonella on stem cells and progenitors cells, carrying a great potential to drastically reduce the use of animals for scientific studies on that topic. In both models, the EGFR pathway, crucial to stem cells and progenitors proliferation and differentiation, is dysregulated by Salmonella, suggesting that repeated infections might have consequences on crypt integrity and further oncogenesis.


Asunto(s)
Diferenciación Celular , Receptores ErbB , Organoides , Infecciones por Salmonella , Salmonella typhimurium , Células Madre , Animales , Organoides/microbiología , Células Madre/metabolismo , Ratones , Salmonella typhimurium/patogenicidad , Salmonella typhimurium/fisiología , Infecciones por Salmonella/microbiología , Infecciones por Salmonella/patología , Receptores ErbB/metabolismo , Receptores ErbB/genética , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Proliferación Celular , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
3.
Vet Res ; 55(1): 81, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926765

RESUMEN

The escalation of antibiotic resistance, pandemics, and nosocomial infections underscores the importance of research in both animal and human infectious diseases. Recent advancements in three-dimensional tissue cultures, or "organoids", have revolutionized the development of in vitro models for infectious diseases. Our study conducts a bibliometric analysis on the use of organoids in modeling infectious diseases, offering an in-depth overview of this field's current landscape. We examined scientific contributions from 2009 onward that focused on organoids in host‒pathogen interactions using the Web of Science Core Collection and OpenAlex database. Our analysis included temporal trends, reference aging, author, and institutional productivity, collaborative networks, citation metrics, keyword cluster dynamics, and disruptiveness of organoid models. VOSviewer, CiteSpace, and Python facilitated this analytical assessment. The findings reveal significant growth and advancements in organoid-based infectious disease research. Analysis of keywords and impactful publications identified three distinct developmental phases in this area that were significantly influenced by outbreaks of Zika and SARS-CoV-2 viruses. The research also highlights the synergistic efforts between academia and publishers in tackling global pandemic challenges. Through mostly consolidating research efforts, organoids are proving to be a promising tool in infectious disease research for both human and animal infectious disease. Their integration into the field necessitates methodological refinements for better physiological emulation and the establishment of extensive organoid biobanks. These improvements are crucial for fully harnessing the potential of organoids in understanding infectious diseases and advancing the development of targeted treatments and vaccines.


Asunto(s)
Bibliometría , Organoides , Organoides/virología , Animales , Humanos , Enfermedades Transmisibles/veterinaria , Enfermedades Transmisibles/epidemiología , Modelos Animales de Enfermedad , COVID-19/epidemiología , COVID-19/virología
4.
Virulence ; 15(1): 2357670, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38804638

RESUMEN

Salmonella enterica subspecies enterica serovar Typhimurium is an intracellular pathogen that invades and colonizes the intestinal epithelium. Following bacterial invasion, Salmonella is enclosed within a membrane-bound vacuole known as a Salmonella-containing vacuole (SCV). However, a subset of Salmonella has the capability to prematurely rupture the SCV and escape, resulting in Salmonella hyper-replication within the cytosol of epithelial cells. A recently published RNA-seq study provides an overview of cytosolic and vacuolar upregulated genes and highlights pagN vacuolar upregulation. Here, using transcription kinetics, protein production profile, and immunofluorescence microscopy, we showed that PagN is exclusively produced by Salmonella in SCV. Gentamicin protection and chloroquine resistance assays were performed to demonstrate that deletion of pagN affects Salmonella replication by affecting the cytosolic bacterial population. This study presents the first example of a Salmonella virulence factor expressed within the endocytic compartment, which has a significant impact on the dynamics of Salmonella cytosolic hyper-replication.


Asunto(s)
Proteínas Bacterianas , Citosol , Salmonella typhimurium , Vacuolas , Factores de Virulencia , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidad , Citosol/microbiología , Vacuolas/microbiología , Vacuolas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Humanos , Virulencia , Infecciones por Salmonella/microbiología , Células HeLa , Células Epiteliales/microbiología , Regulación Bacteriana de la Expresión Génica
5.
Vet Res ; 54(1): 63, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37525204

RESUMEN

Chicken infection with Salmonella Typhimurium is an important source of foodborne human diseases. Salmonella colonizes the avian intestinal tract and more particularly the caecum, without causing symptoms. This thus poses a challenge for the prevention of foodborne transmission. Until now, studies on the interaction of Salmonella with the avian gut intestine have been limited by the absence of in vitro intestinal culture models. Here, we established intestinal crypt-derived chicken organoids to better decipher the impact of Salmonella intracellular replication on avian intestinal epithelium. Using a 3D organoid model, we observed a significantly higher replication rate of the intracellular bacteria in caecal organoids than in ileal organoids. Our model thus recreates intracellular environment, allowing Salmonella replication of avian epithelium according to the intestinal segment. Moreover, an inhibition of the cellular proliferation was observed in infected ileal and caecal organoids compared to uninfected organoids. This appears with a higher effect in ileal organoids, as well as a higher cytokine and signaling molecule response in infected ileal organoids at 3 h post-infection (hpi) than in caecal organoids that could explain the lower replication rate of Salmonella observed later at 24 hpi. To conclude, this study demonstrates that the 3D organoid is a model allowing to decipher the intracellular impact of Salmonella on the intestinal epithelium cell response and illustrates the importance of the gut segment used to purify stem cells and derive organoids to specifically study epithelial cell -Salmonella interaction.


Asunto(s)
Pollos , Salmonella typhimurium , Humanos , Animales , Salmonella typhimurium/fisiología , Intestinos , Mucosa Intestinal/microbiología , Ciego , Organoides/microbiología
6.
Front Microbiol ; 13: 906238, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35733975

RESUMEN

Salmonella enterica serovars are invasive gram-negative bacteria, causing a wide range of diseases from gastroenteritis to typhoid fever, representing a public health threat around the world. Salmonella gains access to the intestinal lumen after oral ingestion of contaminated food or water. The crucial initial step to establish infection is the interaction with the intestinal epithelium. Human-adapted serovars such as S. Typhi or S. Paratyphi disseminate to systemic organs and induce life-threatening disease known as typhoid fever, whereas broad-host serovars such as S. Typhimurium usually are limited to the intestine and responsible for gastroenteritis in humans. To overcome intestinal epithelial barrier, Salmonella developed mechanisms to induce cellular invasion, intracellular replication and to face host defence mechanisms. Depending on the serovar and the respective host organism, disease symptoms differ and are linked to the ability of the bacteria to manipulate the epithelial barrier for its own profit and cross the intestinal epithelium. This review will focus on S. Typhimurium (STm). To better understand STm pathogenesis, it is crucial to characterize the crosstalk between STm and the intestinal epithelium and decipher the mechanisms and epithelial cell types involved. Thus, the purpose of this review is to summarize our current knowledge on the molecular dialogue between STm and the various cell types constituting the intestinal epithelium with a focus on the mechanisms developed by STm to cross the intestinal epithelium and access to subepithelial or systemic sites and survive host defense mechanisms.

7.
BMC Microbiol ; 21(1): 153, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-34020586

RESUMEN

BACKGROUND: Salmonella can invade host cells via a type three secretion system called T3SS-1 and its outer membrane proteins, PagN and Rck. However, the mechanism of PagN-dependent invasion pathway used by Salmonella enterica, subspecies enterica serovar Typhimurium remains unclear. RESULTS: Here, we report that PagN is well conserved and widely distributed among the different species and subspecies of Salmonella. We showed that PagN of S. Typhimurium was sufficient and necessary to enable non-invasive E. coli over-expressing PagN and PagN-coated beads to bind to and invade different non-phagocytic cells. According to the literature, PagN is likely to interact with heparan sulfate proteoglycan (HSPG) as PagN-mediated invasion could be inhibited by heparin treatment in a dose-dependent manner. This report shows that this interaction is not sufficient to allow the internalization mechanism. Investigation of the role of ß1 integrin as co-receptor showed that mouse embryo fibroblasts genetically deficient in ß1 integrin were less permissive to PagN-mediated internalization. Moreover, PagN-mediated internalization was fully inhibited in glycosylation-deficient pgsA-745 cells treated with anti-ß1 integrin antibody, supporting the hypothesis that ß1 integrin and HSPG cooperate to induce the PagN-mediated internalization mechanism. In addition, use of specific inhibitors and expression of dominant-negative derivatives demonstrated that tyrosine phosphorylation and class I phosphatidylinositol 3-kinase were crucial to trigger PagN-dependent internalization, as for the Rck internalization mechanism. Finally, scanning electron microscopy with infected cells showed microvillus-like extensions characteristic of Zipper-like structure, engulfing PagN-coated beads and E. coli expressing PagN, as observed during Rck-mediated internalization. CONCLUSIONS: Our results supply new comprehensions into T3SS-1-independent invasion mechanisms of S. Typhimurium and highly indicate that PagN induces a phosphatidylinositol 3-kinase signaling pathway, leading to a Zipper-like entry mechanism as the Salmonella outer membrane protein Rck.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Infecciones por Salmonella/microbiología , Salmonella typhimurium/metabolismo , Animales , Proteínas de la Membrana Bacteriana Externa/genética , Línea Celular , Fibroblastos/metabolismo , Fibroblastos/microbiología , Humanos , Integrina beta1/genética , Integrina beta1/metabolismo , Ratones , Infecciones por Salmonella/genética , Infecciones por Salmonella/metabolismo , Salmonella typhimurium/genética , Sistemas de Secreción Tipo III/genética , Sistemas de Secreción Tipo III/metabolismo
8.
Vet Res ; 52(1): 33, 2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33632315

RESUMEN

In livestock species, the monolayer of epithelial cells covering the digestive mucosa plays an essential role for nutrition and gut barrier function. However, research on farm animal intestinal epithelium has been hampered by the lack of appropriate in vitro models. Over the past decade, methods to culture livestock intestinal organoids have been developed in pig, bovine, rabbit, horse, sheep and chicken. Gut organoids from farm animals are obtained by seeding tissue-derived intestinal epithelial stem cells in a 3-dimensional culture environment reproducing in vitro the stem cell niche. These organoids can be generated rapidly within days and are formed by a monolayer of polarized epithelial cells containing the diverse differentiated epithelial progeny, recapitulating the original structure and function of the native epithelium. The phenotype of intestinal organoids is stable in long-term culture and reflects characteristics of the digestive segment of origin. Farm animal intestinal organoids can be amplified in vitro, cryopreserved and used for multiple experiments, allowing an efficient reduction of the use of live animals for experimentation. Most of the studies using livestock intestinal organoids were used to investigate host-microbe interactions at the epithelial surface, mainly focused on enteric infections with viruses, bacteria or parasites. Numerous other applications of farm animal intestinal organoids include studies on nutrient absorption, genome editing and bioactive compounds screening relevant for agricultural, veterinary and biomedical sciences. Further improvements of the methods used to culture intestinal organoids from farm animals are required to replicate more closely the intestinal tissue complexity, including the presence of non-epithelial cell types and of the gut microbiota. Harmonization of the methods used to culture livestock intestinal organoids will also be required to increase the reproducibility of the results obtained in these models. In this review, we summarize the methods used to generate and cryopreserve intestinal organoids in farm animals, present their phenotypes and discuss current and future applications of this innovative culture system of the digestive epithelium.


Asunto(s)
Animales Domésticos/anatomía & histología , Técnicas de Cultivo de Célula/veterinaria , Criopreservación/veterinaria , Intestino Grueso/citología , Intestino Delgado/citología , Organoides/citología , Animales , Técnicas de Cultivo de Célula/métodos , Criopreservación/métodos , Células Epiteliales/citología , Mucosa Intestinal/citología
9.
Front Cell Infect Microbiol ; 10: 586934, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33330131

RESUMEN

Salmonella Typhimurium expresses on its outer membrane the protein Rck which interacts with the epidermal growth factor receptor (EGFR) of the plasma membrane of the targeted host cells. This interaction activates signaling pathways, leading to the internalization of Salmonella. Since EGFR plays a key role in cell proliferation, we sought to determine the influence of Rck mediated infection on the host cell cycle. By analyzing the DNA content of uninfected and infected cells using flow cytometry, we showed that the Rck-mediated infection induced a delay in the S-phase (DNA replication phase) of the host cell cycle, independently of bacterial internalization. We also established that this Rck-dependent delay in cell cycle progression was accompanied by an increased level of host DNA double strand breaks and activation of the DNA damage response. Finally, we demonstrated that the S-phase environment facilitated Rck-mediated bacterial internalization. Consequently, our results suggest that Rck can be considered as a cyclomodulin with a genotoxic activity.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa , Salmonella typhimurium , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Bacterianas , División Celular , Membrana Celular , Salmonella typhimurium/genética , Transducción de Señal
10.
Front Microbiol ; 10: 541, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30972041

RESUMEN

Defensins are natural antimicrobial peptides. The avian beta-defensin AvBD7 isolated from the chicken bone marrow possess broad antibacterial spectrum and strong resistance to proteolysis. However, its ability to fight systemic infections of major concern for public health, such as salmonellosis, is unknown. As a first approach, fluorescence labeling of AvBD7 allowed to track its systemic distribution after intraperitoneal injection in mice using whole body live imaging. It was associated to peritoneal cells and to deeper organs such as the liver. In the next step, the use of labeled AvBD7 allowed to observe its interaction with murine macrophages in culture. After incubation, it was able to penetrate inside the cells through an endocytosis-like mechanism. Furthermore, natural AvBD7 contributed to the control of intracellular multiplication of a multidrug resistant Salmonella strain, after incubation with infected macrophages. Finally, administration in a model of systemic lethal Salmonella infection in mice led to significant improvement of mouse survival, consistently with significant reduction of the liver bacterial load. In conclusion, the results reveal a hitherto unknown intracellular antibacterial effect of AvBD7 in Salmonella target cells and support AvBD7 as a candidate of interest for the treatment of infectious diseases caused by multidrug-resistant pathogenic Enterobacteriaceae.

11.
Artículo en Inglés | MEDLINE | ID: mdl-29276700

RESUMEN

Salmonella is a facultative intracellular Gram-negative bacterium, responsible for a wide range of food- and water-borne diseases ranging from gastroenteritis to typhoid fever depending on hosts and serotypes. Salmonella thus represents a major threat to public health. A key step in Salmonella pathogenesis is the invasion of phagocytic and non-phagocytic host cells. To trigger its own internalization into non-phagocytic cells, Salmonella has developed different mechanisms, involving several invasion factors. For decades, it was accepted that Salmonella could only enter cells through a type three secretion system, called T3SS-1. Recent research has shown that this bacterium expresses outer membrane proteins, such as the Rck protein, which is able to induce Salmonella entry mechanism. Rck mimics natural host cell ligands and triggers engulfment of the bacterium by interacting with the epidermal growth factor receptor. Salmonella is thus able to use multiple entry pathways during the Salmonella infection process. However, it is unclear how and when Salmonella exploits the T3SS-1 and Rck entry mechanisms. As a series of reviews have focused on the T3SS-1, this review aims to describe the current knowledge and the limitations of our understanding of the Rck outer membrane protein. The regulatory cascade which controls Rck expression and the molecular mechanisms underlying Rck-mediated invasion into cells are summarized. The potential role of Rck-mediated invasion in Salmonella pathogenesis and the intracellular behavior of the bacteria following a Salmonella Rck-dependent entry are discussed.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Adhesión Bacteriana , Endocitosis , Infecciones por Salmonella/microbiología , Salmonella/fisiología , Receptores ErbB/metabolismo , Regulación Bacteriana de la Expresión Génica , Unión Proteica , Sistemas de Secreción Tipo III/metabolismo
12.
FASEB J ; 30(12): 4180-4191, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27609774

RESUMEN

The Salmonella Rck outer membrane protein binds to the cell surface, which leads to bacterial internalization via a Zipper mechanism. This invasion process requires induction of cellular signals, including phosphorylation of tyrosine proteins, and activation of c-Src and PI3K, which arises as a result of an interaction with a host cell surface receptor. In this study, epidermal growth factor receptor (EGFR) was identified as the cell signaling receptor required for Rck-mediated adhesion and internalization. First, Rck-mediated adhesion and internalization were shown to be altered when EGFR expression and activity were modulated. Then, immunoprecipitations were performed to demonstrate the Rck-EGFR interaction. Furthermore, surface plasmon resonance biosensor and homogeneous time-resolved fluorescence technologies were used to demonstrate the direct interaction of Rck with the extracellular domain of human EGFR. Finally, our study strongly suggests a noncompetitive binding of Rck and EGF to EGFR. Overall, these results demonstrate that Rck is able to bind to EGFR and thereby establish a tight adherence to provide a signaling cascade, which leads to internalization of Rck-expressing bacteria.-Wiedemann, A., Mijouin, L., Ayoub, M. A., Barilleau, E., Canepa, S., Teixeira-Gomes, A. P., Le Vern, Y., Rosselin, M., Reiter, E., Velge, P. Identification of the epidermal growth factor receptor as the receptor for Salmonella Rck-dependent invasion.


Asunto(s)
Membrana Celular/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Salmonella/metabolismo , Proteína Tirosina Quinasa CSK , Línea Celular , Escherichia coli , Fosforilación , Receptores de Superficie Celular/metabolismo , Transducción de Señal/fisiología , Familia-src Quinasas/metabolismo
13.
FEMS Microbiol Lett ; 361(1): 1-7, 2014 12.
Artículo en Inglés | MEDLINE | ID: mdl-25283734

RESUMEN

Salmonella is a facultative intracellular bacterium found within a variety of phagocytic and nonphagocytic cells in vitro and in vivo For decades, it has been accepted that Salmonella can enter cells only through a Trigger mechanism mediated by a type three secretion system, called T3SS-1. However, recent researches have shown that this bacterium can use other invasion pathways mediating either Trigger or Zipper entry processes. Following eukaryotic cell invasion, Salmonella has to ensure its survival and proliferation within host cells. To do so, this bacterium resides either within a membrane-bound vacuole or freely within host cell cytosol. It is not clear why Salmonella has developed these alternate mechanisms for cell invasion and proliferation, but this provides a new insight into the mechanisms leading to Salmonella-induced diseases. Thus, the aim of this review is to show the evolution of Salmonella-host cell interaction paradigms by summarizing the different strategies used by Salmonella serotypes to invade and proliferate into eukaryotic cells.


Asunto(s)
Células Eucariotas/microbiología , Interacciones Huésped-Patógeno , Salmonella/inmunología , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Modelos Biológicos , Serogrupo
14.
Vet Res ; 45: 81, 2014 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-25175996

RESUMEN

Salmonella Gallinarum and Salmonella Enteritidis are genetically closely related however associated with different pathologies. Several studies have suggested that S. Gallinarum is less invasive in vitro than S. Enteritidis. In this study we confirm that the S. Gallinarum strains tested were much less invasive than the S. Enteritidis strains tested in cells of avian or human origin. In addition, the S. Gallinarum T3SS-1-dependent ability to invade host cells was delayed by two to three hours compared to S. Enteritidis, indicating that T3SS-1-dependent entry is less efficient in S. Gallinarum than S. Enteritidis. This was neither due to a decreased transcription of T3SS-1 related genes when bacteria come into contact with cells, as transcription of hilA, invF and sipA was similar to that observed for S. Enteritidis, nor to a lack of functionality of the S. Gallinarum T3SS-1 apparatus as this apparatus was able to secrete and translocate effector proteins into host cells. In contrast, genome comparison of four S. Gallinarum and two S. Enteritidis strains revealed that all S. Gallinarum genomes displayed the same point mutations in each of the main T3SS-1 effector genes sipA, sopE, sopE2, sopD and sopA.


Asunto(s)
Enfermedades de las Aves de Corral/microbiología , Salmonelosis Animal/microbiología , Infecciones por Salmonella/microbiología , Salmonella enterica/fisiología , Salmonella enterica/patogenicidad , Salmonella enteritidis/fisiología , Salmonella enteritidis/patogenicidad , Animales , Adhesión Bacteriana , Línea Celular , Línea Celular Tumoral , Pollos , Humanos , Salmonella enterica/genética , Salmonella enteritidis/genética
15.
Mol Microbiol ; 94(2): 254-71, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25080967

RESUMEN

One important step for the pathogenesis of Salmonella is its ability to penetrate host cells. Recently, a new entry system involving the outer membrane protein Rck has been characterized. Previous studies have shown that the pefI-srgC locus, which contains rck, was regulated by the temperature and SdiA, the transcriptional regulator of quorum sensing in Salmonella. To decipher the regulation of rck by SdiA, we first confirmed the operon organization of the pefI-srgC locus. Using plasmid-based transcriptional fusions, we showed that only the predicted distal promoter upstream of pefI, PefIP2, displays an SdiA- and acyl-homoserine lactones-dependent activity while the predicted proximal PefIP1 promoter exhibits a very low activity independent on SdiA in our culture conditions. A direct and specific interaction of SdiA with this PefIP2 region was identified using electrophoretic mobility shift assays and surface plasmon resonance studies. We also observed that Rck expression is negatively regulated by the nucleoid-associated H-NS protein at both 25°C and 37°C. This work is the first demonstration of a direct regulation of genes by SdiA in Salmonella and will help further studies designed to identify environmental conditions required for Rck expression and consequently contribute to better characterize the role of this invasin in vivo.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Operón , Salmonella typhimurium/genética , Transactivadores/metabolismo , Factores de Virulencia/biosíntesis , Fusión Artificial Génica , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Perfilación de la Expresión Génica , Orden Génico , Genes Bacterianos , Genes Reporteros , Regiones Promotoras Genéticas , Unión Proteica , Percepción de Quorum , Salmonella typhimurium/fisiología , Resonancia por Plasmón de Superficie , Temperatura , Factores de Virulencia/genética
16.
Front Microbiol ; 5: 791, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25653644

RESUMEN

Salmonella enterica species are Gram-negative bacteria, which are responsible for a wide range of food- and water-borne diseases in both humans and animals, thereby posing a major threat to public health. Recently, there has been an increasing number of reports, linking Salmonella contaminated raw vegetables and fruits with food poisoning. Many studies have shown that an essential feature of the pathogenicity of Salmonella is its capacity to cross a number of barriers requiring invasion of a large variety of cells and that the extent of internalization may be influenced by numerous factors. However, it is poorly understood how Salmonella successfully infects hosts as diversified as animals or plants. The aim of this review is to describe the different stages required for Salmonella interaction with its hosts: (i) attachment to host surfaces; (ii) entry processes; (iii) multiplication; (iv) suppression of host defense mechanisms; and to point out similarities and differences between animal and plant infections.

17.
PLoS One ; 7(8): e44072, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22952878

RESUMEN

Marek's Disease Virus (MDV) is an avian alpha-herpesvirus that only spreads from cell-to-cell in cell culture. While its cell-to-cell spread has been shown to be dependent on actin filament dynamics, the mechanisms regulating this spread remain largely unknown. Using a recombinant BAC20 virus expressing an EGFPVP22 tegument protein, we found that the actin cytoskeleton arrangements and cell-cell contacts differ in the center and periphery of MDV infection plaques, with cells in the latter areas showing stress fibers and rare cellular projections. Using specific inhibitors and activators, we determined that Rho-ROCK pathway, known to regulate stress fiber formation, and Rac-PAK, known to promote lamellipodia formation and destabilize stress fibers, had strong contrasting effects on MDV cell-to-cell spread in primary chicken embryo skin cells (CESCs). Inhibition of Rho and its ROCKs effectors led to reduced plaque sizes whereas inhibition of Rac or its group I-PAKs effectors had the adverse effect. Importantly, we observed that the shape of MDV plaques is related to the semi-ordered arrangement of the elongated cells, at the monolayer level in the vicinity of the plaques. Inhibition of Rho-ROCK signaling also resulted in a perturbation of the cell arrangement and a rounding of plaques. These opposing effects of Rho and Rac pathways in MDV cell-to-cell spread were validated for two parental MDV recombinant viruses with different ex vivo spread efficiencies. Finally, we demonstrated that Rho/Rac pathways have opposing effects on the accumulation of N-cadherin at cell-cell contact regions between CESCs, and defined these contacts as adherens junctions. Considering the importance of adherens junctions in HSV-1 cell-to-cell spread in some cell types, this result makes of adherens junctions maintenance one potential and attractive hypothesis to explain the Rho/Rac effects on MDV cell-to-cell spread. Our study provides the first evidence that MDV cell-to-cell spread is regulated by Rho/Rac signaling.


Asunto(s)
Herpesvirus Gallináceo 2/fisiología , Enfermedad de Marek/patología , Transducción de Señal , Quinasas p21 Activadas/metabolismo , Proteínas de Unión al GTP rac/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Quinasas Asociadas a rho/metabolismo , Citoesqueleto de Actina/efectos de los fármacos , Citoesqueleto de Actina/metabolismo , Uniones Adherentes/efectos de los fármacos , Uniones Adherentes/metabolismo , Animales , Cadherinas/metabolismo , Comunicación Celular/efectos de los fármacos , Microambiente Celular/efectos de los fármacos , Embrión de Pollo , Herpesvirus Gallináceo 2/efectos de los fármacos , Lipopolisacáridos/farmacología , Lisofosfolípidos/farmacología , Enfermedad de Marek/virología , Movimiento/efectos de los fármacos , Polimerizacion/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Piel/efectos de los fármacos , Piel/embriología , Piel/patología , Piel/virología , Esfingosina/análogos & derivados , Esfingosina/farmacología , Fibras de Estrés/efectos de los fármacos , Fibras de Estrés/metabolismo , Proteínas de Unión al GTP rho/antagonistas & inhibidores , Quinasas Asociadas a rho/antagonistas & inhibidores
18.
J Biol Chem ; 287(37): 31148-54, 2012 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-22810232

RESUMEN

The Salmonella outer membrane protein Rck mediates a Zipper entry mechanism controlled by tyrosine phosphorylation and class I phosphatidylinositol 3-kinase (PI 3-kinase). However, the underlying mechanism leading to this signaling cascade remains unclear. The present study showed that using Rck-coated beads or Rck-overexpressing Escherichia coli, Rck-mediated actin polymerization and invasion were blocked by PP2, a Src family tyrosine kinase inhibitor. In addition, phosphorylation of Src family kinases significantly increased after stimulation with Rck. The specific contribution of c-Src, one member of the Src family kinases, was demonstrated using c-Src-deficient fibroblasts or c-Src siRNA transfected epithelial cells. We also observed that Rck-mediated internalization led to the formation of a complex between c-Src and at least one tyrosine-phosphorylated protein. Furthermore, our results revealed that the c-Src signal molecule was upstream of PI 3-kinase during the Rck-mediated signaling pathway as Rck-mediated PI 3-kinase activation was blocked by PP2, and PI 3-kinase inhibitor had no effect on the Src phosphorylation. These results demonstrate the involvement of c-Src upstream of the PI 3-kinase in the Zipper entry process mediated by Rck.


Asunto(s)
Proteínas Bacterianas/metabolismo , Complejos Multiproteicos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Infecciones por Salmonella/metabolismo , Salmonella enteritidis/metabolismo , Proteínas Bacterianas/genética , Proteína Tirosina Quinasa CSK , Línea Celular , Activación Enzimática/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Complejos Multiproteicos/genética , Fosfatidilinositol 3-Quinasas/genética , Proteínas Tirosina Quinasas/genética , Infecciones por Salmonella/genética , Salmonella enteritidis/genética , Familia-src Quinasas
19.
Gut Pathog ; 4(1): 5, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-22632036

RESUMEN

BACKGROUND: Many Gram-positive and Gram-negative bacteria produce large quantities of indole as an intercellular signal in microbial communities. Indole demonstrated to affect gene expression in Escherichia coli as an intra-species signaling molecule. In contrast to E. coli, Salmonella does not produce indole because it does not harbor tnaA, which encodes the enzyme responsible for tryptophan metabolism. Our previous study demonstrated that E. coli-conditioned medium and indole induce expression of the AcrAB multidrug efflux pump in Salmonella enterica serovar Typhimurium for inter-species communication; however, the global effect of indole on genes in Salmonella remains unknown. RESULTS: To understand the complete picture of genes regulated by indole, we performed DNA microarray analysis of genes in the S. enterica serovar Typhimurium strain ATCC 14028s affected by indole. Predicted Salmonella phenotypes affected by indole based on the microarray data were also examined in this study. Indole induced expression of genes related to efflux-mediated multidrug resistance, including ramA and acrAB, and repressed those related to host cell invasion encoded in the Salmonella pathogenicity island 1, and flagella production. Reduction of invasive activity and motility of Salmonella by indole was also observed phenotypically. CONCLUSION: Our results suggest that indole is an important signaling molecule for inter-species communication to control drug resistance and virulence of S. enterica.

20.
FASEB J ; 26(4): 1569-81, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22210834

RESUMEN

The Salmonella outer membrane protein Rck mediates a Zipper-like entry mechanism controlled by Rac, the Arp2/3 complex, and actin polymerization. However, little is known about the early steps leading to Rac activation and Rck-mediated internalization. The use of pharmacological inhibitors or PI 3-kinase dominant-negative mutant induced more than 80% less invasion without affecting attachment. Moreover, Rck-mediated internalization caused an increase in the association of p85 with at least one tyrosine-phosphorylated protein, indicating that class I PI 3-kinase activity was stimulated. We also report that this PI 3-kinase activity is essential for Rac1 activation. However, Rac recruitment at the Rck-mediated entry site was independent of its activation. Using a pharmacological approach or Akt-knockout cells, we also demonstrated that Akt was phosphorylated in response to Rck-mediated internalization as demonstrated by immunoblotting analysis and that all three Akt isoforms were required during this process. Overall, our results describe a signaling pathway involving tyrosine phosphorylation, class I PI 3-kinase, Akt activation, and Rac activation, leading to Rck-dependent Zipper entry. The specificity of this signaling pathway with regard to that of the type 3 secretion system, which is the other invasion process of Salmonella, is discussed.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Salmonella enteritidis/metabolismo , Salmonella enteritidis/patogenicidad , Transducción de Señal/fisiología , Proteína de Unión al GTP rac1/metabolismo , Animales , Proteínas de la Membrana Bacteriana Externa/genética , Línea Celular , Células Cultivadas , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Ratones , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Salmonella enteritidis/citología , Proteína de Unión al GTP rac1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...