Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(49): e2311240120, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38019859

RESUMEN

High-resolution NMR spectroscopy enabled us to characterize allosteric transitions between various functional states of the dimeric Escherichia coli Lac repressor. In the absence of ligands, the dimer exists in a dynamic equilibrium between DNA-bound and inducer-bound conformations. Binding of either effector shifts this equilibrium toward either bound state. Analysis of the ternary complex between repressor, operator DNA, and inducer shows how adding the inducer results in allosteric changes that disrupt the interdomain contacts between the inducer binding and DNA binding domains and how this in turn leads to destabilization of the hinge helices and release of the Lac repressor from the operator. Based on our data, the allosteric mechanism of the induction process is in full agreement with the well-known Monod-Wyman-Changeux model.


Asunto(s)
Proteínas de Escherichia coli , Represoras Lac/genética , Represoras Lac/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulación Alostérica/genética , Escherichia coli/metabolismo , ADN/metabolismo , Estructura Secundaria de Proteína , Operón Lac/genética
2.
Sci Adv ; 8(30): eabo0517, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35895815

RESUMEN

Nucleosome assembly requires the coordinated deposition of histone complexes H3-H4 and H2A-H2B to form a histone octamer on DNA. In the current paradigm, specific histone chaperones guide the deposition of first H3-H4 and then H2A-H2B. Here, we show that the acidic domain of DNA repair factor APLF (APLFAD) can assemble the histone octamer in a single step and deposit it on DNA to form nucleosomes. The crystal structure of the APLFAD-histone octamer complex shows that APLFAD tethers the histones in their nucleosomal conformation. Mutations of key aromatic anchor residues in APLFAD affect chaperone activity in vitro and in cells. Together, we propose that chaperoning of the histone octamer is a mechanism for histone chaperone function at sites where chromatin is temporarily disrupted.


Asunto(s)
Histonas , Nucleosomas , ADN/química , Reparación del ADN , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Chaperonas Moleculares/genética
4.
J Vis Exp ; (171)2021 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-34057451

RESUMEN

Thermal shift assays (TSAs) examine how the melting temperature (Tm) of a target protein changes in response to changes in its environment (e.g., buffer composition). The utility of TSA, and specifically of nano-Differential Scanning Fluorimetry (nano-DSF), has been established over the years, both for finding conditions that help stabilize a specific protein and for looking at ligand binding by monitoring changes in the apparent Tm. This paper presents an efficient screening of the Diamond-SGC-iNEXT Poised (DSi-Poised) fragment library (768 compounds) by the use of nano-DSF, monitoring Tm to identify potential fragment binding. The prerequisites regarding protein quality and concentration for performing nano-DSF experiments are briefly outlined followed by a step-by-step protocol that uses a nano-liter robotic dispenser commonly used in structural biology laboratories for preparing the required samples in 96-well plates. The protocol describes how the reagent mixtures are transferred to the capillaries needed for nano-DSF measurements. In addition, this paper provides protocols to measure thermal denaturation (monitoring intrinsic tryptophan fluorescence) and aggregation (monitoring light back-scattering) and the subsequent steps for data transfer and analysis. Finally, screening experiments with three different protein targets are discussed to illustrate the use of this procedure in the context of lead discovery campaigns. The overall principle of the method described can be easily transferred to other fragment libraries or adapted to other instruments.


Asunto(s)
Fluorometría , Proteínas , Temperatura
5.
Int J Mol Sci ; 21(6)2020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-32188158

RESUMEN

Feline immunodeficiency virus (FIV), a lentivirus causing an immunodeficiency syndrome in cats, represents a relevant model of pre-screening therapies for human immunodeficiency virus (HIV). The envelope glycoproteins gp36 in FIV and gp41 in HIV mediate the fusion of the virus with the host cell membrane. They have a common structural framework in the C-terminal region that includes a Trp-rich membrane-proximal external region (MPER) and a C-terminal heptad repeat (CHR). MPER is essential for the correct positioning of gp36 on the lipid membrane, whereas CHR is essential for the stabilization of the low-energy six-helical bundle (6HB) that is necessary for the fusion of the virus envelope with the cell membrane. Conformational data for gp36 are missing, and several aspects of the MPER structure of different lentiviruses are still debated. In the present work, we report the structural investigation of a gp36 construct that includes the MPER and part of the CHR domain (737-786gp36 CHR-MPER). Using 2D and 3D homo and heteronuclear NMR spectra on 15N and 13C double-labelled samples, we solved the NMR structure in micelles composed of dodecyl phosphocholine (DPC) and sodium dodecyl sulfate (SDS) 90/10 M: M. The structure of 737-786gp36 CHR-MPER is characterized by a helix-turn-helix motif, with a regular α-helix and a moderately flexible 310 helix, characterizing the CHR and the MPER domains, respectively. The two helices are linked by a flexible loop regulating their orientation at a ~43° angle. We investigated the positioning of 737-786gp36 CHR-MPER on the lipid membrane using spin label-enhanced NMR and ESR spectroscopies. On a different scale, using confocal microscopy imaging, we studied the effect of 737-786gp36 CHR-MPER on 1,2-dioleoyl-sn-glycero-3-phosphocholine/1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DOPC/DOPG) multilamellar vesicles (MLVs). This effect results in membrane budding and tubulation that is reminiscent of a membrane-plasticizing role that is typical of MPER domains during the event in which the virus envelope merges with the host cell membrane.


Asunto(s)
Virus de la Inmunodeficiencia Felina/metabolismo , Imagen por Resonancia Magnética/métodos , Proteínas del Envoltorio Viral/química , Secuencia de Aminoácidos , Espectroscopía de Resonancia por Spin del Electrón , VIH-1 , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Fosforilcolina/análogos & derivados , Conformación Proteica , Internalización del Virus
6.
Cells ; 8(12)2019 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-31817822

RESUMEN

Signalling by cyclic adenosine monophosphate (cAMP) occurs via various effector proteins, notably protein kinase A and the guanine nucleotide exchange factors Epac1 and Epac2. These proteins are activated by cAMP binding to conserved cyclic nucleotide binding domains. The specific roles of the effector proteins in various processes in different types of cells are still not well defined, but investigations have been facilitated by the development of cyclic nucleotide analogues with distinct selectivity profiles towards a single effector protein. A remaining challenge in the development of such analogues is the poor membrane permeability of nucleotides, which limits their applicability in intact living cells. Here, we report the synthesis and characterisation of S223-AM, a cAMP analogue designed as an acetoxymethyl ester prodrug to overcome limitations of permeability. Using total internal reflection imaging with various fluorescent reporters, we show that S223-AM selectively activates Epac2, but not Epac1 or protein kinase A, in intact insulin-secreting ß-cells, and that this effect was associated with pronounced activation of the small G-protein Rap. A comparison of the effects of different cAMP analogues in pancreatic islet cells deficient in Epac1 and Epac2 demonstrates that cAMP-dependent Rap activity at the ß-cell plasma membrane is exclusively dependent on Epac2. With its excellent selectivity and permeability properties, S223-AM should get broad utility in investigations of cAMP effector involvement in many different types of cells.


Asunto(s)
AMP Cíclico/análogos & derivados , AMP Cíclico/farmacología , Profármacos/farmacología , Animales , Línea Celular , Línea Celular Tumoral , AMP Cíclico/química , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Secreción de Insulina/efectos de los fármacos , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Ratones , Profármacos/síntesis química , Profármacos/química
7.
Front Microbiol ; 10: 377, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30930858

RESUMEN

We analyzed the polar membrane lipids of 13 strains of halo(alkali)philic euryarchaea from hypersaline lakes. Nine belong to the class Halobacteria, representing two functional groups: aerobic polysaccharide utilizers and sulfur-respiring anaerobes. The other four strains represent halo(alkali)philic methanogens from the class Methanomicrobia and a recently discovered class Methanonatronarchaeia. A wide range of polar lipids were detected across the 13 strains including dialkyl glycerol diethers (archaeols), membrane-spanning glycerol tetraethers and diether-based cardiolipins. The archaeols contained a range of core lipid structures, including combinations of C20 and C25 isoprenoidal alkyl chains, unsaturations, and hydroxy moieties. Several diether lipids were novel, including: (a) a phosphatidylglycerolhexose (PG-Gly) headgroup, (b) a N,N,N-trimethyl aminopentanetetrol (APT)-like lipid with a methoxy group in place of a hydroxy group on the pentanetetrol, (c) a series of polar lipids with a headgroup with elemental composition of either C12H25NO13S or C12H25NO16S2, and (d) novel cardiolipins containing a putative phosphatidylglycerolphosphate glycerophosphate (PGPGP) polar moiety. We found that the lipid distribution of the 13 strains could be generally separated into two groups, the methanogens (group) and the Halobacteria (class) based on the presence of specific core lipids. Within the methanogens, adaption to a high or more moderate salt concentration resulted in different ratios of glycerol dialkyl glycerol tetraethers (GDGTs) to archaeol. The methanogen Methanosalsum natronophilum AME2T had the most complex diether lipid composition of any of the 13 strains, including hydroxy archaeol and macrocyclic archaeol which we surmise is an order-specific membrane adaption. The zwitterionic headgroups APT and APT-Me were detected only in the Methanomicrobiales member Methanocalculus alkaliphilus AMF2T which also contained the highest level of unsaturated lipids. Only alkaliphilic members of the Natrialbales order contained PGPGP cardiolipins and the PG-Gly headgroup. The four analyzed neutrophilic members of the Halobacteria were characterized by the presence of sulfur-containing headgroups and glycolipids. The presence of cardiolipins with one or more i-C25 alkyl chains, generally termed extended archaeol (EXT-AR), in one of the Methanonatronarchaeia strains was unexpected as only one other order of methanogenic archaea has been reported to produce EXT-AR. We examined this further by looking into the genomic potential of various archaea to produce EXT-AR.

8.
Front Chem ; 7: 921, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32039147

RESUMEN

Ubiquitination is a process in which a protein is modified by the covalent attachment of the C-terminal carboxylic acid of ubiquitin (Ub) to the ε-amine of lysine or N-terminal methionine residue of a substrate protein or another Ub molecule. Each of the seven internal lysine residues and the N-terminal methionine residue of Ub can be linked to the C-terminus of another Ub moiety to form 8 distinct Ub linkages and the resulting differences in linkage types elicit different Ub signaling pathways. Cellular responses are triggered when proteins containing ubiquitin-binding domains (UBDs) recognize and bind to specific polyUb linkage types. To get more insight into the differences between polyUb chains, all of the seven lysine-linked di-ubiquitin molecules (diUbs) were prepared and used as a model to study their structural conformations in solution using NMR spectroscopy. We report the synthesis of diUb molecules, fully 15N-labeled on the distal (N-terminal) Ub moiety and revealed their structural orientation with respect to the proximal Ub. As expected, the diUb molecules exist in different conformations in solution, with multiple conformations known to exist for K6-, K48-, and K63-linked diUb molecules. These multiple conformations allow structural flexibility in binding with UBDs thereby inducing unique responses. One of the well-known but poorly understood UBD-Ub interaction is the recognition of K6 polyubiquitin by the ubiquitin-associated (UBA) domain of UBXN1 in the BRCA-mediated DNA repair pathway. Using our synthetic 15N-labeled diUbs, we establish here how a C-terminally extended UBA domain of UBXN1 confers specificity to K6 diUb while the non-extended version of the domain does not show any linkage preference. We show that the two distinct conformations of K6 diUb that exist in solution converge into a single conformation upon binding to this extended form of the UBA domain of the UBXN1 protein. It is likely that more of such extended UBA domains exist in nature and can contribute to linkage-specificity in Ub signaling. The isotopically labeled diUb compounds described here and the use of NMR to study their interactions with relevant partner molecules will help accelerate our understanding of Ub signaling pathways.

9.
Front Mol Biosci ; 5: 100, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30505835

RESUMEN

Endocannabinoid peptides, or "pepcans," are endogenous ligands of the CB1 cannabinoid receptor. Depending on their length, they display diverse activity: For instance, the nona-peptide Pepcan-9, also known as hemopressin, is a powerful inhibitor of CB1, whereas the longer variant Pepcan-12, which extends by only three amino acid residues at the N-terminus, acts on both CB1 and CB2 as an allosteric modulator, although with diverse effects. Despite active research on their pharmacological applications, very little is known about structure-activity relationships of pepcans. Different structures have been proposed for the nona-peptide, which has also been reported to form fibrillar aggregates. This might have affected the outcome and reproducibility of bioactivity studies. In an attempt of elucidating the determinants of both biological activity and aggregation propensity of Pepcan-9 and Pepcan-12, we have performed their structure characterization in solvent systems characterized by different polarity and pH. We have found that, while disordered in aqueous environment, both peptides display helical structure in less polar environment, mimicking the proteic receptor milieu. In the case of Pepcan-9, this structure is fully consistent with the observed modulation of the CB1. For Pepcan-12, whose allosteric binding site is still unknown, the presented structure is compatible with the binding at one of the previously proposed allosteric sites on CB1. These findings open the way to structure-driven design of selective peptide modulators of CB1.

10.
Cell Rep ; 25(3): 537-543.e3, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30332635

RESUMEN

Naegleria gruberi is a free-living non-pathogenic amoeboflagellate and relative of Naegleria fowleri, a deadly pathogen causing primary amoebic meningoencephalitis (PAM). A genomic analysis of N. gruberi exists, but physiological evidence for its core energy metabolism or in vivo growth substrates is lacking. Here, we show that N. gruberi trophozoites need oxygen for normal functioning and growth and that they shun both glucose and amino acids as growth substrates. Trophozoite growth depends mainly upon lipid oxidation via a mitochondrial branched respiratory chain, both ends of which require oxygen as final electron acceptor. Growing N. gruberi trophozoites thus have a strictly aerobic energy metabolism with a marked substrate preference for the oxidation of fatty acids. Analyses of N. fowleri genome data and comparison with those of N. gruberi indicate that N. fowleri has the same type of metabolism. Specialization to oxygen-dependent lipid breakdown represents an additional metabolic strategy in protists.


Asunto(s)
Encéfalo/metabolismo , Genómica/métodos , Lípidos/fisiología , Naegleria fowleri/genética , Naegleria/metabolismo , Oxígeno/metabolismo , Proteínas Protozoarias/metabolismo , Encéfalo/parasitología , Genoma de Protozoos , Glucosa/metabolismo , Humanos , Naegleria/genética , Naegleria/crecimiento & desarrollo , Proteínas Protozoarias/genética
11.
Chem Sci ; 9(30): 6348-6360, 2018 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-30310563

RESUMEN

Kraft lignin, the main by-product of the pulping industry, is an abundant, yet highly underutilized renewable aromatic polymer. During kraft pulping, the lignin undergoes extensive structural modification, with many labile native bonds being replaced by new, more recalcitrant ones. Currently little is known about the nature of those bonds and linkages in kraft lignin, information that is essential for its efficient valorization to renewable fuels, materials or chemicals. Here, we provide detailed new insights into the structure of softwood kraft lignin, identifying and quantifying the major native as well as kraft pulping-derived units as a function of molecular weight. De novo synthetic kraft lignins, generated from (isotope labelled) dimeric and advanced polymeric models, provided key mechanistic understanding of kraft lignin formation, revealing different process dependent reaction pathways to be operating. The discovery of a novel kraft-derived lactone condensation product proved diagnostic for the identification of a previously unknown homovanillin based condensation pathway. The lactone marker is found in various different soft- and hardwood kraft lignins, suggesting the general pertinence of this new condensation mechanism for kraft pulping. These novel structural and mechanistic insights will aid the development of future biomass and lignin valorization technologies.

12.
Nucleic Acids Res ; 46(14): 7138-7152, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-29905837

RESUMEN

Genome replication, transcription and repair require the assembly/disassembly of the nucleosome. Histone chaperones are regulators of this process by preventing formation of non-nucleosomal histone-DNA complexes. Aprataxin and polynucleotide kinase like factor (APLF) is a non-homologous end-joining (NHEJ) DNA repair factor that possesses histone chaperone activity in its acidic domain (APLFAD). Here, we studied the molecular basis of this activity using biochemical and structural methods. We find that APLFAD is intrinsically disordered and binds histone complexes (H3-H4)2 and H2A-H2B specifically and with high affinity. APLFAD prevents unspecific complex formation between H2A-H2B and DNA in a chaperone assay, establishing for the first time its specific histone chaperone function for H2A-H2B. On the basis of a series of nuclear magnetic resonance studies, supported by mutational analysis, we show that the APLFAD histone binding domain uses two aromatic side chains to anchor to the α1-α2 patches on both H2A and H2B, thereby covering most of their DNA-interaction surface. An additional binding site on both APLFAD and H2A-H2B may be involved in the handoff between APLF and DNA or other chaperones. Together, our data support the view that APLF provides not only a scaffold but also generic histone chaperone activity for the NHEJ-complex.


Asunto(s)
ADN-(Sitio Apurínico o Apirimidínico) Liasa/química , Chaperonas de Histonas/química , Proteínas de Unión a Poli-ADP-Ribosa/química , ADN/química , ADN/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Chaperonas de Histonas/metabolismo , Histonas/química , Histonas/metabolismo , Modelos Moleculares , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Unión Proteica , Dominios Proteicos
13.
Structure ; 24(10): 1707-1718, 2016 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-27594685

RESUMEN

The type IV secretion system (T4SS) from the phytopathogen Xanthomonas citri (Xac) is a bactericidal nanomachine. The T4SS core complex is a ring composed of multiple copies of VirB7-VirB9-VirB10 subunits. Xac-VirB7 contains a disordered N-terminal tail (VirB7NT) that recognizes VirB9, and a C-terminal domain (VirB7CT) involved in VirB7 self-association. Here, we show that VirB7NT forms a short ß strand upon binding to VirB9 and stabilizes it. A tight interaction between them is essential for T4SS assembly and antibacterial activity. Abolishing VirB7 self-association or deletion of the VirB7 C-terminal domain impairs this antibacterial activity without disturbing T4SS assembly. These findings reveal protein interactions within the core complex that are critical for the stability and activity of a T4SS.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Tipo IV/metabolismo , Xanthomonas/metabolismo , Antibacterianos/química , Antibacterianos/metabolismo , Modelos Moleculares , Unión Proteica , Estabilidad Proteica , Estructura Secundaria de Proteína , Sistemas de Secreción Tipo IV/química
14.
Protein Sci ; 25(9): 1722-33, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27364543

RESUMEN

Bacterial translation initiation factor IF2 complexed with GTP binds to the 30S ribosomal subunit, promotes ribosomal binding of fMet-tRNA, and favors the joining of the small and large ribosomal subunits yielding a 70S initiation complex ready to enter the translation elongation phase. Within the IF2 molecule subdomain G3, which is believed to play an important role in the IF2-30S interaction, is positioned between the GTP-binding G2 and the fMet-tRNA binding C-terminal subdomains. In this study the solution structure of subdomain G3 of Geobacillus stearothermophilus IF2 has been elucidated. G3 forms a core structure consisting of two ß-sheets with each four anti-parallel strands, followed by a C-terminal α-helix. In line with its role as linker between G3 and subdomain C1, this helix has no well-defined orientation but is endowed with a dynamic nature. The structure of the G3 core is that of a typical OB-fold module, similar to that of the corresponding subdomain of Thermus thermophilus IF2, and to that of other known RNA-binding modules such as IF2-C2, IF1 and subdomains II of elongation factors EF-Tu and EF-G. Structural comparisons have resulted in a model that describes the interaction between IF2-G3 and the 30S ribosomal subunit.


Asunto(s)
Proteínas Bacterianas/química , Geobacillus stearothermophilus/química , Modelos Moleculares , Factor 2 Procariótico de Iniciación/química , Subunidades Ribosómicas Pequeñas Bacterianas/química , Proteínas Bacterianas/metabolismo , Geobacillus stearothermophilus/metabolismo , Factor 2 Procariótico de Iniciación/metabolismo , Dominios Proteicos , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo
15.
ChemMedChem ; 11(9): 990-1002, 2016 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-27136597

RESUMEN

Polysialic acid (polySia) and polySia glycomimetic molecules support nerve cell regeneration, differentiation, and neuronal plasticity. With a combination of biophysical and biochemical methods, as well as data mining and molecular modeling techniques, it is possible to correlate specific ligand-receptor interactions with biochemical processes and in vivo studies that focus on the potential therapeutic impact of polySia, polySia glycomimetics, and sulfated polysaccharides in neuronal diseases. With this strategy, the receptor interactions of polySia and polySia mimetics can be understood on a submolecular level. As the HNK-1 glycan also enhances neuronal functions, we tested whether similar sulfated oligo- and polysaccharides from seaweed could be suitable, in addition to polySia, for finding potential new routes into patient care focusing on an improved cure for various neuronal diseases. The knowledge obtained here on the structural interplay between polySia or sulfated polysaccharides and their receptors can be exploited to develop new drugs and application routes for the treatment of neurological diseases and dysfunctions.


Asunto(s)
Polisacáridos/metabolismo , Ácidos Siálicos/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Diferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Femenino , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Sustrato de la Proteína Quinasa C Rico en Alanina Miristoilada , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Resonancia Magnética Nuclear Biomolecular , Polisacáridos/química , Polisacáridos/farmacología , Unión Proteica , Estructura Terciaria de Proteína , Ácidos Siálicos/química , Ácidos Siálicos/farmacología
16.
ACS Chem Biol ; 10(11): 2624-32, 2015 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-26352092

RESUMEN

The estrogen receptors (ERs) feature, next to their transcriptional role, important nongenomic signaling actions, with emerging clinical relevance. The Src Homology 2 (SH2) domain mediated interaction between cSrc kinase and ER plays a key role in this; however the molecular determinants of this interaction have not been elucidated. Here, we used phosphorylated ER peptide and semisynthetic protein constructs in a combined biochemical and structural study to, for the first time, provide a quantitative and structural characterization of the cSrc SH2-ER interaction. Fluorescence polarization experiments delineated the SH2 binding motif in the ER sequence. Chemical shift perturbation analysis by nuclear magnetic resonance (NMR) together with molecular dynamics (MD) simulations allowed us to put forward a 3D model of the ER-SH2 interaction. The structural basis of this protein-protein interaction has been compared with that of the high affinity SH2 binding sequence GpYEEI. The ER features a different binding mode from that of the "two-pronged plug two-hole socket" model in the so-called specificity determining region. This alternative binding mode is modulated via the folding of ER helix 12, a structural element directly C-terminal of the key phosphorylated tyrosine. The present findings provide novel molecular entries for understanding nongenomic ER signaling and targeting the corresponding disease states.


Asunto(s)
Modelos Biológicos , Receptores de Estrógenos/metabolismo , Familia-src Quinasas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Femenino , Fluorescencia , Humanos , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Péptidos/química , Péptidos/genética , Unión Proteica , Pliegue de Proteína , Receptores de Estrógenos/química , Dominios Homologos src , Familia-src Quinasas/química
17.
FEBS Lett ; 589(19 Pt B): 2726-30, 2015 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-26272829

RESUMEN

This paper describes a study of the phospholipid profile of Escherichia coli MG1655 cultures at the B and D periods of the cell cycle. The results indicate that the phosphatidyl glycerol fraction grows relatively rapidly and that the size of the cardiolipin (CL) fraction does not grow at all during cell elongation. This is consistent with observations that CL is located preferentially at the poles of E. coli. It also suggests that lipid production is controlled as a function of the cell cycle.


Asunto(s)
Ciclo Celular , Escherichia coli/química , Escherichia coli/citología , Fosfolípidos/química , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Fosfolípidos/biosíntesis
18.
Front Microbiol ; 6: 637, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26175720

RESUMEN

Microbial decomposition of organic matter is an essential process in the global carbon cycle. The soil bacteria Pseudopedobacter saltans and Flavobacterium johnsoniae are both able to degrade complex organic molecules, but it is not fully known how their membrane structures are adapted to their environmental niche. The membrane lipids of these species were extracted and analyzed using high performance liquid chromatography-electrospray ionization/ion trap/mass spectrometry (HPLC-ESI/IT/MS) and high resolution accurate mass/mass spectrometry (HRAM/MS). Abundant unknown intact polar lipids (IPLs) from P. saltans were isolated and further characterized using amino acid analysis and two dimensional nuclear magnetic resonance (NMR) spectroscopy. Ornithine IPLs (OLs) with variable (hydroxy) fatty acid composition were observed in both bacterial species. Lysine-containing IPLs (LLs) were also detected in both species and were characterized here for the first time using HPLC-MS. Novel LLs containing hydroxy fatty acids and novel hydroxylysine lipids with variable (hydroxy) fatty acid composition were identified in P. saltans. The confirmation of OL and LL formation in F. johnsoniae and P. saltans and the presence of OlsF putative homologs in P. saltans suggest the OlsF gene coding protein is possibly involved in OL and LL biosynthesis in both species, however, potential pathways of OL and LL hydroxylation in P. saltans are still undetermined. Triplicate cultures of P. saltans were grown at three temperature/pH combinations: 30°C/pH 7, 15°C/pH 7, and 15°C/pH 9. The fractional abundance of total amino acid containing IPLs containing hydroxylated fatty acids was significantly higher at higher temperature, and the fractional abundance of lysine-containing IPLs was significantly higher at lower temperature and higher pH. These results suggest that these amino acid-containing IPLs, including the novel hydroxylysine lipids, could be involved in temperature and pH stress response of soil bacteria.

19.
J Biol Chem ; 290(33): 20541-55, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26085086

RESUMEN

The ERCC1-XPF heterodimer, a structure-specific DNA endonuclease, is best known for its function in the nucleotide excision repair (NER) pathway. The ERCC1 point mutation F231L, located at the hydrophobic interaction interface of ERCC1 (excision repair cross-complementation group 1) and XPF (xeroderma pigmentosum complementation group F), leads to severe NER pathway deficiencies. Here, we analyze biophysical properties and report the NMR structure of the complex of the C-terminal tandem helix-hairpin-helix domains of ERCC1-XPF that contains this mutation. The structures of wild type and the F231L mutant are very similar. The F231L mutation results in only a small disturbance of the ERCC1-XPF interface, where, in contrast to Phe(231), Leu(231) lacks interactions stabilizing the ERCC1-XPF complex. One of the two anchor points is severely distorted, and this results in a more dynamic complex, causing reduced stability and an increased dissociation rate of the mutant complex as compared with wild type. These data provide a biophysical explanation for the severe NER deficiencies caused by this mutation.


Asunto(s)
Síndrome de Cockayne/genética , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Mutación Puntual , Secuencia de Aminoácidos , Proteínas de Unión al ADN/química , Dimerización , Endonucleasas/química , Humanos , Modelos Químicos , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido
20.
PLoS Biol ; 13(1): e1002038, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25603503

RESUMEN

The second messenger cAMP is known to augment glucose-induced insulin secretion. However, its downstream targets in pancreatic ß-cells have not been unequivocally determined. Therefore, we designed cAMP analogues by a structure-guided approach that act as Epac2-selective agonists both in vitro and in vivo. These analogues activate Epac2 about two orders of magnitude more potently than cAMP. The high potency arises from increased affinity as well as increased maximal activation. Crystallographic studies demonstrate that this is due to unique interactions. At least one of the Epac2-specific agonists, Sp-8-BnT-cAMPS (S-220), enhances glucose-induced insulin secretion in human pancreatic cells. Selective targeting of Epac2 is thus proven possible and may be an option in diabetes treatment.


Asunto(s)
AMP Cíclico/análogos & derivados , AMP Cíclico/química , Factores de Intercambio de Guanina Nucleótido/agonistas , Sitios de Unión , Línea Celular Tumoral , Cristalografía por Rayos X , AMP Cíclico/farmacología , Diseño de Fármacos , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/fisiología , Humanos , Insulina/metabolismo , Secreción de Insulina , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Modelos Moleculares , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA