Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 62(44): 18280-18289, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37870915

RESUMEN

In this work, a series of novel boronium-bis(trifluoromethylsulfonyl)imide [TFSI-] ionic liquids (IL) are introduced and investigated. The boronium cations were designed with specific structural motifs that delivered improved electrochemical and physical properties, as evaluated through cyclic voltammetry, broadband dielectric spectroscopy, densitometry, thermogravimetric analysis, and differential scanning calorimetry. Boronium cations, which were appended with N-alkylpyrrolidinium substituents, exhibited superior physicochemical properties, including high conductivity, low viscosity, and electrochemical windows surpassing 6 V. Remarkably, the boronium ionic liquid functionalized with both an ethyl-substituted pyrrolidinium and trimethylamine, [(1-e-pyrr)N111BH2][TFSI], exhibited a 6.3 V window, surpassing previously published boronium-, pyrrolidinium-, and imidazolium-based IL electrolytes. Favorable physical properties and straightforward tunability make boronium ionic liquids promising candidates to replace conventional organic electrolytes for electrochemical applications requiring high voltages.

2.
Chem Commun (Camb) ; 59(60): 9275, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37461373

RESUMEN

Correction for 'Unorthodox crystalline drug salts via the reaction of amine-containing drugs with CO2' by Mohammad Soltani et al., Chem. Commun., 2019, 55, 13546-13549, https://doi.org/10.1039/C9CC06429J.

4.
Phys Chem Chem Phys ; 25(28): 19271, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37427887

RESUMEN

Correction for 'Tuning the melting point of selected ionic liquids through adjustment of the cation's dipole moment' by Brooks D. Rabideau et al., Phys. Chem. Chem. Phys., 2020, 22, 12301-12311, https://doi.org/10.1039/D0CP01214A.

5.
Front Cell Dev Biol ; 11: 1141804, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37377738

RESUMEN

PP2A-serine/threonine protein phosphatases function as heterotrimeric holoenzymes, composed of a common scaffold (A-subunit encoded by PPP2R1A/PPP2R1B), a common catalytic (C-subunit encoded by PPP2CA/PPP2CB), and one of many variable regulatory (B) subunits. The site of phosphoprotein phosphatase (PPP) hydrolysis features a bimetal system (M1/M2), an associated bridge hydroxide [W1(OH-)], and a highly-conserved core sequence. In the presumptive common mechanism, the phosphoprotein's seryl/threonyl phosphate coordinates the M1/M2 system, W1(OH-) attacks the central P atom, rupturing the antipodal bond, and simultaneously, a histidine/aspartate tandem protonates the exiting seryl/threonyl alkoxide. Based on studies of PPP5C, a conserved arginine proximal to M1 is also expected to bind the substrate's phosphate group in a bidentate fashion. However, in PP2A isozymes, the role of the arginine (Arg89) in hydrolysis is not clear because two independent structures for PP2A(PPP2R5C) and PP2A(PPP2R5D) show that Arg89 engages in a weak salt bridge at the B:C interface. These observations raise the question of whether hydrolysis proceeds with or without direct involvement of Arg89. The interaction of Arg89 with B:Glu198 in PP2A(PPP2R5D) is significant because the pathogenic E198K variant of B56δ is associated with irregular protein phosphorylation levels and consequent developmental disorders (Jordan's Syndrome; OMIM #616355). In this study, we perform quantum-based hybrid [ONIOM(UB3LYP/6-31G(d):UPM7)] calculations on 39-residue models of the PP2A(PPP2R5D)/pSer (phosphoserine) system to estimate activation barriers for hydrolysis in the presence of bidentate Arg89-substrate binding and when Arg89 is otherwise engaged in the salt-bridge interaction. Our solvation-corrected results yield ΔH‡ ≈ ΔE‡ = +15.5 kcal/mol for the former case, versus +18.8 kcal/mol for the latter, indicating that bidentate Arg89-substrate binding is critical for optimal catalytic function of the enzyme. We speculate that PP2A(PPP2R5D) activity is suppressed by B:Glu198 sequestration of C:Arg89 under native conditions, whereas the PP2A(PPP2R5D)-holoenzyme containing the E198K variant has a positively-charged lysine in this position that alters normal function.

6.
Plant J ; 111(4): 1139-1151, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35765883

RESUMEN

Plastids contain their own genomes, which are transcribed by two types of RNA polymerases. One of those enzymes is a bacterial-type, multi-subunit polymerase encoded by the plastid genome. The plastid-encoded RNA polymerase (PEP) is required for efficient expression of genes encoding proteins involved in photosynthesis. Despite the importance of PEP, its DNA binding locations have not been studied on the genome-wide scale at high resolution. We established a highly specific approach to detect the genome-wide pattern of PEP binding to chloroplast DNA using plastid chromatin immunoprecipitation-sequencing (ptChIP-seq). We found that in mature Arabidopsis thaliana chloroplasts, PEP has a complex DNA binding pattern with preferential association at genes encoding rRNA, tRNA, and a subset of photosynthetic proteins. Sigma factors SIG2 and SIG6 strongly impact PEP binding to a subset of tRNA genes and have more moderate effects on PEP binding throughout the rest of the genome. PEP binding is commonly enriched on gene promoters, around transcription start sites. Finally, the levels of PEP binding to DNA are correlated with levels of RNA accumulation, which demonstrates the impact of PEP on chloroplast gene expression. Presented data are available through a publicly available Plastid Genome Visualization Tool (Plavisto) at https://plavisto.mcdb.lsa.umich.edu/.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , ADN de Cloroplastos/genética , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes del Cloroplasto , Plastidios/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Factor sigma/genética , Transcripción Genética
7.
Commun Biol ; 4(1): 1420, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34934174

RESUMEN

Elevated aldehyde dehydrogenase (ALDH) activity correlates with poor outcome for many solid tumors as ALDHs may regulate cell proliferation and chemoresistance of cancer stem cells (CSCs). Accordingly, potent, and selective inhibitors of key ALDH enzymes may represent a novel CSC-directed treatment paradigm for ALDH+ cancer types. Of the many ALDH isoforms, we and others have implicated the elevated expression of ALDH1A3 in mesenchymal glioma stem cells (MES GSCs) as a target for the development of novel therapeutics. To this end, our structure of human ALDH1A3 combined with in silico modeling identifies a selective, active-site inhibitor of ALDH1A3. The lead compound, MCI-INI-3, is a selective competitive inhibitor of human ALDH1A3 and shows poor inhibitory effect on the structurally related isoform ALDH1A1. Mass spectrometry-based cellular thermal shift analysis reveals that ALDH1A3 is the primary binding protein for MCI-INI-3 in MES GSC lysates. The inhibitory effect of MCI-INI-3 on retinoic acid biosynthesis is comparable with that of ALDH1A3 knockout, suggesting that effective inhibition of ALDH1A3 is achieved with MCI-INI-3. Further development is warranted to characterize the role of ALDH1A3 and retinoic acid biosynthesis in glioma stem cell growth and differentiation.


Asunto(s)
Aldehído Oxidorreductasas/antagonistas & inhibidores , Glioma/metabolismo , Células Madre Neoplásicas/metabolismo , Tretinoina/metabolismo , Humanos
8.
Nucleic Acids Res ; 49(17): 9799-9808, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34469565

RESUMEN

Non-coding transcription is an important determinant of heterochromatin formation. In Arabidopsis thaliana a specialized RNA polymerase V (Pol V) transcribes pervasively and produces long non-coding RNAs. These transcripts work with small interfering RNA to facilitate locus-specific establishment of RNA-directed DNA methylation (RdDM). Subsequent maintenance of RdDM is associated with elevated levels of Pol V transcription. However, the impact of DNA methylation on Pol V transcription remained unresolved. We found that DNA methylation strongly enhances Pol V transcription. The level of Pol V transcription is reduced in mutants defective in RdDM components working downstream of Pol V, indicating that RdDM is maintained by a mutual reinforcement of DNA methylation and Pol V transcription. Pol V transcription is affected only on loci that lose DNA methylation in all sequence contexts in a particular mutant, including mutants lacking maintenance DNA methyltransferases, which suggests that RdDM works in a complex crosstalk with other silencing pathways.


Asunto(s)
Arabidopsis/genética , Metilación de ADN , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Elementos Transponibles de ADN , ADN-Citosina Metilasas/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Retroalimentación Fisiológica , Metiltransferasas/metabolismo , ARN Largo no Codificante/biosíntesis , Transcripción Genética
9.
Annu Rev Plant Biol ; 72: 245-271, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-33752440

RESUMEN

Plants have an extraordinary diversity of transcription machineries, including five nuclear DNA-dependent RNA polymerases. Four of these enzymes are dedicated to the production of long noncoding RNAs (lncRNAs), which are ribonucleic acids with functions independent of their protein-coding potential. lncRNAs display a broad range of lengths and structures, but they are distinct from the small RNA guides of RNA interference (RNAi) pathways. lncRNAs frequently serve as structural, catalytic, or regulatory molecules for gene expression. They can affect all elements of genes, including promoters, untranslated regions, exons, introns, and terminators, controlling gene expression at various levels, including modifying chromatin accessibility, transcription, splicing, and translation. Certain lncRNAs protect genome integrity, while others respond to environmental cues like temperature, drought, nutrients, and pathogens. In this review, we explain the challenge of defining lncRNAs, introduce the machineries responsible for their production, and organize this knowledge by viewing the functions of lncRNAs throughout the structure of a typical plant gene.


Asunto(s)
ARN Largo no Codificante , Núcleo Celular , Cromatina , Plantas
10.
ACS Chem Biol ; 16(4): 604-614, 2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33784074

RESUMEN

All life forms require nicotinamide adenine dinucleotide, NAD+, and its reduced form NADH. They are redox partners in hundreds of cellular enzymatic reactions. Changes in the intracellular levels of total NAD (NAD+ + NADH) and the (NAD+/NADH) ratio can cause cellular dysfunction. When not present in protein complexes, NADH and its phosphorylated form NADPH degrade through intricate mechanisms. Replenishment of a declining total NAD pool can be achieved with biosynthetic precursors that include one of the reduced forms of nicotinamide riboside (NR+), NRH. NRH, like NADH and NADPH, is prone to degradation via oxidation, hydration, and isomerization and, as such, is an excellent model compound to rationalize the nonenzymatic metabolism of NAD(P)H in a biological context. Here, we report on the stability of NRH and its propensity to isomerize and irreversibly degrade. We also report the preparation of two of its naturally occurring isomers, their chemical stability, their reactivity toward NRH-processing enzymes, and their cell-specific cytotoxicity. Furthermore, we identify a mechanism by which NRH degradation causes covalent peptide modifications, a process that could expose a novel type of NADH-protein modifications and correlate NADH accumulation with "protein aging." This work highlights the current limitations in detecting NADH's endogenous catabolites and in establishing the capacity for inducing cellular dysfunction.


Asunto(s)
Niacinamida/análogos & derivados , Compuestos de Piridinio/química , Isomerismo , NAD/química , Niacinamida/química , Oxidación-Reducción
11.
Proc Natl Acad Sci U S A ; 117(48): 30799-30804, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33199612

RESUMEN

Eukaryotic genomes are pervasively transcribed, yet most transcribed sequences lack conservation or known biological functions. In Arabidopsis thaliana, RNA polymerase V (Pol V) produces noncoding transcripts, which base pair with small interfering RNA (siRNA) and allow specific establishment of RNA-directed DNA methylation (RdDM) on transposable elements. Here, we show that Pol V transcribes much more broadly than previously expected, including subsets of both heterochromatic and euchromatic regions. At already established RdDM targets, Pol V and siRNA work together to maintain silencing. In contrast, some euchromatic sequences do not give rise to siRNA but are covered by low levels of Pol V transcription, which is needed to establish RdDM de novo if a transposon is reactivated. We propose a model where Pol V surveils the genome to make it competent to silence newly activated or integrated transposons. This indicates that pervasive transcription of nonconserved sequences may serve an essential role in maintenance of genome integrity.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Genoma , ARN no Traducido , Transcripción Genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Elementos Transponibles de ADN , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Modelos Biológicos , Complejos Multiproteicos/metabolismo , Especificidad por Sustrato
12.
Phys Chem Chem Phys ; 22(21): 12301-12311, 2020 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-32432261

RESUMEN

In previous work with thermally robust salts [Cassity et al., Phys. Chem. Chem. Phys., 2017, 19, 31560] it was noted that an increase in the dipole moment of the cation generally led to a decrease in the melting point. Molecular dynamics simulations of the liquid state revealed that an increased dipole moment reduces cation-cation repulsions through dipole-dipole alignment. This was believed to reduce the liquid phase enthalpy, which would tend to lower the melting point of the IL. In this work we further test this principle by replacing hydrogen atoms with fluorine atoms at selected positions within the cation. This allows us to alter the electrostatics of the cation without substantially affecting the sterics. Furthermore, the strength of the dipole moment can be controlled by choosing different positions within the cation for replacement. We studied variants of four different parent cations paired with bistriflimide and determined their melting points, and enthalpies and entropies of fusion through DSC experiments. The decreases in the melting point were determined to be enthalpically driven. We found that the dipole moment of the cation, as determined by quantum chemical calculations, is inversely correlated with the melting point of the given compound. Molecular dynamics simulations of the crystalline and solid states of two isomers showed differences in their enthalpies of fusion that closely matched those seen experimentally. Moreover, this reduction in the enthalpy of fusion was determined to be caused by an increase in the enthalpy of the crystalline state. We provide evidence that dipole-dipole interactions between cations leads to the formation of cationic domains in the crystalline state. These cationic associations partially block favourable cation-anion interactions, which are recovered upon melting. If, however, the dipole-dipole interactions between cations is too strong they have a tendency to form glasses. This study provides a design rule for lowering the melting point of structurally similar ILs by altering their dipole moment.

13.
Plant Cell Physiol ; 61(6): 1107-1119, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32191307

RESUMEN

RNase H1 is an endonuclease specific toward the RNA strand of RNA:DNA hybrids. Members of this protein family are present in most living organisms and are essential for removing RNA that base pairs with DNA. It prevents detrimental effects of RNA:DNA hybrids and is involved in several biological processes. Arabidopsis thaliana has been previously shown to contain three genes encoding RNase H1 proteins that localize to three distinct cellular compartments. We show that these genes originate from two gene duplication events. One occurred in the common ancestor of dicots and produced nuclear and organellar RNase H1 paralogs. Second duplication occurred in the common ancestor of Brassicaceae and produced mitochondrial- and plastid-localized proteins. These proteins have the canonical RNase H1 activity, which requires at least four ribonucleotides for endonucleolytic digestion. Analysis of mutants in the RNase H1 genes revealed that the nuclear RNH1A and mitochondrial RNH1B are dispensable for development under normal growth conditions. However, the presence of at least one organellar RNase H1 (RNH1B or RNH1C) is required for embryonic development. The plastid-localized RNH1C affects plastid DNA copy number and sensitivity to replicative stress. Our results present the evolutionary history of RNH1 proteins in A. thaliana, demonstrate their canonical RNase H1 activity and indicate their role in early embryonic development.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/enzimología , Ribonucleasa H/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassicaceae/enzimología , Brassicaceae/genética , Cloroplastos/enzimología , Cloroplastos/metabolismo , Evolución Molecular , Ácidos Nucleicos/metabolismo , Filogenia , Ribonucleasa H/metabolismo
14.
RSC Adv ; 10(35): 20521-20528, 2020 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35517722

RESUMEN

Recent work by Wasserscheid, et al. suggests that PPh4 + is an organic molecular ion of truly exceptional thermal stability. Herein we provide data that cements that conclusion: specifically, we show that aliphatic moieties of modified PPh4 +-based cations incorporating methyl, methylene, or methine C-H bonds burn away at high temperatures in the presence of oxygen, forming CO, CO2, and water, leaving behind the parent ion PPh4 +. The latter then undergoes no further reaction, at least below 425 °C.

15.
Chem Commun (Camb) ; 55(90): 13546-13549, 2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-31647068

RESUMEN

Drugs containing amine groups react with CO2 to form crystalline ammonium carbamates or carbamic acids. In this approach, both the cation and anion of the salt, or the neutral CO2 adduct, are derived from the parent drug, generating new crystalline versions in a 'masked' or prodrug form. It is proposed that this approach may serve as a valuable new tool in engineering the physical properties of drugs for formulation purposes.


Asunto(s)
Aminas/química , Compuestos de Amonio/química , Carbamatos/química , Dióxido de Carbono/química , Aniones/química , Cationes/química , Cristalografía por Rayos X , Modelos Moleculares , Estructura Molecular , Sales (Química)/química
16.
New Phytol ; 224(1): 421-438, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31111491

RESUMEN

BIR1 is a receptor-like kinase that functions as a negative regulator of basal immunity and cell death in Arabidopsis. Using Arabidopsis thaliana and Tobacco rattle virus (TRV), we investigate the antiviral role of BIR1, the molecular mechanisms of BIR1 gene expression regulation during viral infections, and the effects of BIR1 overexpression on plant immunity and development. We found that SA acts as a signal molecule for BIR1 activation during infection. Inactivating mutations of BIR1 in the bir1-1 mutant cause strong antiviral resistance independently of constitutive cell death or SA defense priming. BIR1 overexpression leads to severe developmental defects, cell death and premature death, which correlate with the constitutive activation of plant immune responses. Our findings suggest that BIR1 acts as a negative regulator of antiviral defense in plants, and indicate that RNA silencing contributes, alone or in conjunction with other regulatory mechanisms, to define a threshold expression for proper BIR1 function beyond which an autoimmune response may occur. This work provides novel mechanistic insights into the regulation of BIR1 homeostasis that may be common for other plant immune components.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/inmunología , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/virología , Inmunidad de la Planta/genética , Virus de Plantas/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Transcripción Genética , Arabidopsis/virología , Proteínas de Arabidopsis/genética , Metilación de ADN/genética , Silenciador del Gen , Mutación/genética , Fenotipo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Plantas Modificadas Genéticamente , Proteínas Serina-Treonina Quinasas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/metabolismo , Proteínas Represoras/metabolismo , Ácido Salicílico/farmacología , Regulación hacia Arriba/genética
18.
Oncotarget ; 9(4): 5016-5031, 2018 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-29435159

RESUMEN

The MYC transcription factor coordinates, via different RNA polymerases, the transcription of both ribosomal RNA (rRNA) and protein genes necessary for nucleolar as well as mitochondrial ribogenesis. In this study we tested if MYC-coordination of rRNA transcription in the nucleolus and in the mitochondrion drives (cancer) cell proliferation. Here we show that the anti-proliferative effect of CX-5461, a Pol I inhibitor of rRNA transcription, in ovarian (cancer) cell contexts characterized by MYC overexpression is enhanced either by 2'-C-Methyl Adenosine (2'-C-MeA), a ribonucleoside that inhibits POLRMT mitochondrial rRNA (mt-rRNA) transcription and doxycycline, a tetracycline known to affect mitochondrial translation. Thus, hindering not only mt-rRNA transcription, but also mitoribosome function in MYC-overexpressing ovarian (cancer) cells, potentiates the antiproliferative effect of CX-5461. Targeting MYC-regulated rRNA transcription and ribogenesis in both the nucleolus and mitochondrion seems to be a novel approach worth of consideration for treating MYC-driven cancer.

19.
Phys Chem Chem Phys ; 19(47): 31560-31571, 2017 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-29165458

RESUMEN

A family of mesothermal ionic liquids comprised of tetraarylphosphonium cations and the bis(trifluoromethanesulfonyl)amidate anion are shown to be materials of exceptional thermal stability, enduring (without decomposition) heating in air at 300 °C for three months. It is further established that three specific structural elements - phenoxy, phenacyl, and phenyl sulfonyl - can be present in the cation structures without compromising their thermal stability, and that their incorporation has specific impacts on the melting points of the salts. Most importantly, it is shown that the ability of such a structural component to lower a salt melting point is tied to its ability to lower cation-cation repulsions in the material.

20.
PLoS Genet ; 13(5): e1006749, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28475589

RESUMEN

RNA-mediated transcriptional silencing, in plants known as RNA-directed DNA methylation (RdDM), is a conserved process where small interfering RNA (siRNA) and long non-coding RNA (lncRNA) help establish repressive chromatin modifications. This process represses transposons and affects the expression of protein-coding genes. We found that in Arabidopsis thaliana AGO4 binding sites are often located distant from genes differentially expressed in ago4. Using Hi-C to compare interactions between genotypes, we show that RdDM-targeted loci have the potential to engage in chromosomal interactions, but these interactions are inhibited in wild-type conditions. In mutants defective in RdDM, the frequency of chromosomal interactions at RdDM targets is increased. This includes increased frequency of interactions between Pol V methylated sites and distal genes that are repressed by RdDM. We propose a model, where RdDM prevents the formation of chromosomal interactions between genes and their distant regulatory elements.


Asunto(s)
Arabidopsis/genética , Metilación de ADN , Regulación de la Expresión Génica de las Plantas , ARN Largo no Codificante/genética , ARN Interferente Pequeño/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Epistasis Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...