Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Kidney Int ; 102(2): 405-420, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35643372

RESUMEN

Autosomal Dominant Tubulointerstitial Kidney Disease (ADTKD) is caused by mutations in one of at least five genes and leads to kidney failure usually in mid adulthood. Throughout the literature, variable numbers of families have been reported, where no mutation can be found and therefore termed ADTKD-not otherwise specified. Here, we aim to clarify the genetic cause of their diseases in our ADTKD registry. Sequencing for all known ADTKD genes was performed, followed by SNaPshot minisequencing for the dupC (an additional cytosine within a stretch of seven cytosines) mutation of MUC1. A virtual panel containing 560 genes reported in the context of kidney disease (nephrome) and exome sequencing were then analyzed sequentially. Variants were validated and tested for segregation. In 29 of the 45 registry families, mutations in known ADTKD genes were found, mostly in MUC1. Sixteen families could then be termed ADTKD-not otherwise specified, of which nine showed diagnostic variants in the nephrome (four in COL4A5, two in INF2 and one each in COL4A4, PAX2, SALL1 and PKD2). In the other seven families, exome sequencing analysis yielded potential disease associated variants in novel candidate genes for ADTKD; evaluated by database analyses and genome-wide association studies. For the great majority of our ADTKD registry we were able to reach a molecular genetic diagnosis. However, a small number of families are indeed affected by diseases classically described as a glomerular entity. Thus, incomplete clinical phenotyping and atypical clinical presentation may have led to the classification of ADTKD. The identified novel candidate genes by exome sequencing will require further functional validation.


Asunto(s)
Enfermedades Renales Poliquísticas , Riñón Poliquístico Autosómico Dominante , Adulto , Pruebas Genéticas , Estudio de Asociación del Genoma Completo , Humanos , Mutación , Enfermedades Renales Poliquísticas/genética , Riñón Poliquístico Autosómico Dominante/genética
2.
Hum Mol Genet ; 31(9): 1357-1369, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-34740236

RESUMEN

Nephronophthisis-related ciliopathies (NPHP-RC) comprises a group of inherited kidney diseases, caused by mutations in genes encoding proteins localizing to primary cilia. NPHP-RC represents one of the most frequent monogenic causes of renal failure within the first three decades of life, but its molecular disease mechanisms remain unclear. Here, we identified biallelic ANKS6 mutations in two affected siblings with late-onset chronic kidney disease by whole-exome sequencing. We employed patient-derived fibroblasts generating an in vitro model to study the precise biological impact of distinct human ANKS6 mutations, completed by immunohistochemistry studies on renal biopsy samples. Functional studies using patient-derived cells showed an impaired integrity of the ciliary inversin compartment with reduced cilia length. Further analyses demonstrated that ANKS6 deficiency leads to a dysregulation of Hippo-signaling through nuclear yes-associated protein (YAP) imbalance and disrupted ciliary localization of YAP. In addition, an altered transcriptional activity of canonical Wnt target genes and altered expression of non-phosphorylated (active) ß-catenin and phosphorylated glycogen synthase kinase 3ß were observed. Upon ciliation, ANKS6 deficiency revealed a deranged subcellular localization and expression of components of the endocytic recycling compartment. Our results demonstrate that ANKS6 plays a key role in regulating the Hippo pathway, and ANKS6 deficiency is linked to dysregulation of signaling pathways. Our study provides molecular clues in understanding pathophysiological mechanisms of NPHP-RC and may offer new therapeutic targets.


Asunto(s)
Ciliopatías , Enfermedades Renales Quísticas , Enfermedades Renales Poliquísticas , Insuficiencia Renal Crónica , Cilios/patología , Ciliopatías/metabolismo , Femenino , Humanos , Enfermedades Renales Quísticas/metabolismo , Masculino , Mutación , Proteínas Nucleares , Enfermedades Renales Poliquísticas/genética
3.
Science ; 374(6573): eabk0410, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34882480

RESUMEN

Cytokinetic membrane abscission is a spatially and temporally regulated process that requires ESCRT (endosomal sorting complexes required for transport)­dependent control of membrane remodeling at the midbody, a subcellular organelle that defines the cleavage site. Alteration of ESCRT function can lead to cataract, but the underlying mechanism and its relation to cytokinesis are unclear. We found a lens-specific cytokinetic process that required PI3K-C2α (phosphatidylinositol-4-phosphate 3-kinase catalytic subunit type 2α), its lipid product PI(3,4)P2 (phosphatidylinositol 3,4-bisphosphate), and the PI(3,4)P2­binding ESCRT-II subunit VPS36 (vacuolar protein-sorting-associated protein 36). Loss of each of these components led to impaired cytokinesis, triggering premature senescence in the lens of fish, mice, and humans. Thus, an evolutionarily conserved pathway underlies the cell type­specific control of cytokinesis that helps to prevent early onset cataract by protecting from senescence.


Asunto(s)
Catarata/patología , Senescencia Celular , Citocinesis , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Cristalino/citología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositoles/metabolismo , Envejecimiento Prematuro , Animales , Evolución Biológica , Proteínas de Unión al Calcio/metabolismo , Catarata/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Humanos , Cristalino/crecimiento & desarrollo , Cristalino/metabolismo , Ratones , Mutación , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Tubulina (Proteína)/metabolismo , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
4.
Transpl Int ; 34(7): 1226-1238, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33904183

RESUMEN

Antibody-mediated rejection (AMR) is a major obstacle to long-term kidney transplantation. AMR is mostly caused by donor specific HLA antibodies, which can arise before or any time after transplantation. Incomplete donor HLA typing and unavailability of donor DNA regularly preclude the assessment of donor-specificity of circulating anti-HLA antibodies. In our centre, this problem arises in approximately 20% of all post-transplant HLA-antibody assessments. We demonstrate that this diagnostic challenge can be resolved by establishing donor renal tubular cell cultures from recipient´s urine as a source of high-quality donor DNA. DNA was then verified for genetic origin and purity by fluorescence in situ hybridization and short tandem repeat analysis. Two representative cases highlight the diagnostic value of this approach which is corroborated by analysis of ten additional patients. The latter were randomly sampled from routine clinical care patients with available donor DNA as controls. In all 12 cases, we were able to perform full HLA typing of the respective donors confirmed by cross-comparison to results from the stored 10 donor DNAs. We propose that this noninvasive diagnostic approach for HLA typing in kidney transplant patients is valuable to determine donor specificity of HLA antibodies, which is important in clinical assessment of suspected AMR.


Asunto(s)
Trasplante de Riñón , Rechazo de Injerto/diagnóstico , Antígenos HLA , Prueba de Histocompatibilidad , Humanos , Hibridación Fluorescente in Situ , Isoanticuerpos , Estudios Retrospectivos , Donantes de Tejidos
5.
Ment Illn ; 12(1): 17-22, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32742627

RESUMEN

PURPOSE: Kidney transplantation (KT) is the treatment of choice for end-stage chronic kidney disease (CKD) and is well known to improve the clinical outcome of patients. However, the impact of KT on comorbid psychological symptoms, particularly depression and anxiety, is less clear, and recipients of living-donor (LD) organs may have a different psychological outcome from recipients of dead-donor (DD) organs. DESIGN/METHODOLOGY/APPROACH: In total, 152 patients were included and analyzed using a cross-sectional design. Of these patients, 25 were pre-KT, 13 were post-KT with a LD transplant and 114 were post-KT with a DD transplant. The patients were tested for a variety of psychometric outcomes using the Hospital Anxiety and Depression Scale, the 12-Item Short Form Health Survey (assessing physical and mental health-related quality of life), the Resilience Scale, the Coping Self-Questionnaire and the Social Support Questionnaire. FINDINGS: The mean age of the patients was 51.25 years and 40 per cent of the patients were female. As expected, the post-KT patients had significantly better scores on the physical component of the Short Form Health Survey than the pre-KT patients, and there were no significant differences between the two post-KT groups. There were no significant differences among the groups in any of the other psychometric outcome parameters tested, including anxiety, depression and the mental component of health-related quality of life. RESEARCH LIMITATIONS/IMPLICATIONS: KT and the origin of the donor organ do not appear to have a significant impact on the psychological well-being of transplant patients with CKD. Although the diagnosis and early treatment of psychological symptoms, such as depression and anxiety, remain important for these patients, decisions regarding KT, including the mode of transplantation, should not be fundamentally influenced by concerns about psychological impairments at the population level. ORIGINALITY/VALUE: CKD is a serious condition involving profound impairment of the physical and psychological well-being of patients. KT is considered the treatment of choice for most of these patients. KT has notable advantages over dialysis with regard to the long-term physical functioning of the renal and cardiovascular system and increases the life expectancy of patients. However, the data on the improvement of psychological impairments after KT are less conclusive.

6.
Genome Med ; 12(1): 54, 2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32580754

RESUMEN

Cell-free DNA (cfDNA) analysis has become essential in cancer diagnostics and prenatal testing. We present cfNOMe, a two-in-one method of measuring cfDNA cytosine methylation and nucleosome occupancy in a single assay using non-disruptive enzymatic cytosine conversion and a custom bioinformatic pipeline. We show that enzymatic cytosine conversion better preserves cfDNA fragmentation information than does bisulfite conversion. Whereas previously separate experiments were required to study either epigenetic marking, cfNOMe delivers reliable results for both, enabling more comprehensive and inexpensive epigenetic cfDNA profiling. cfNOMe has the potential to advance biomarker discovery and diagnostic usage in diseases with systemic perturbations of cfDNA composition.


Asunto(s)
Bioensayo , Ácidos Nucleicos Libres de Células , Epigénesis Genética , Epigenómica/métodos , Metilación de ADN , Humanos , Enfermedades Renales/genética , Polimorfismo de Nucleótido Simple
7.
Am J Transplant ; 20(5): 1410-1416, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31814324

RESUMEN

In light of the organ shortage, there is a great responsibility to assess postmortal organs for which procurement has been consented and to increase the life span of transplanted organs. The former responsibility has moved many centers to accept extended criteria organs. The latter responsibility requires an exact diagnosis and, if possible, omission of the harmful influence on the transplant. We report the course of a kidney transplant that showed a steady decline of function over a decade, displaying numerous cysts of different sizes. Clinical workup excluded the most frequent causes of chronic transplant failure. The filed allocation documents mentioned the donor's disease of oral-facial-digital syndrome, a rare ciliopathy, which can also affect the kidney. Molecular diagnosis was performed by culturing donor tubular cells from the recipient´s urine more than 10 years after transplantation. Next-generation panel sequencing with DNA from tubular urinary cells revealed a novel truncating mutation in OFD1, which sufficiently explains the features of the kidney transplants, also found in the second kidney allograft. Despite this severe donor disease, lifesaving transplantation with good long-term outcome was enabled for 5 recipients.


Asunto(s)
Fallo Renal Crónico , Trasplante de Riñón , Obtención de Tejidos y Órganos , Supervivencia de Injerto , Humanos , Riñón , Fallo Renal Crónico/cirugía , Trasplante de Riñón/efectos adversos , Complicaciones Posoperatorias , Donantes de Tejidos
9.
Medicine (Baltimore) ; 98(36): e16995, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31490381

RESUMEN

RATIONALE: Active tuberculosis constitutes a relevant risk for kidney transplant recipients. In contrast to immunocompetent hosts, kidney transplant recipients often show atypical presentation and course of the disease impeding diagnosis. Especially extrapulmonary or disseminated infection is more frequent and can resemble malignant processes. However, reactivation of tuberculosis mostly develops within the early post-transplant course, whereas malignancies are predominantly long-term complications. We report a case of disseminated abdominal tuberculosis developing 10 years after kidney transplantation and review the underlying literature. PATIENT CONCERNS AND DIAGNOSES: A 51-year-old lady presented with epigastric pain, diarrhea, weight loss and night sweats 10 years after deceased-donor kidney transplantation. An epigastric as well as multiple peritoneal masses were found suspicious of a cancer of unknown primary. Colonoscopy revealed a colon tumor with the biopsy showing no dysplasia but histiocytic and granulomatous infiltration with acid-fast bacilli. Mycobacterium tuberculosis was detected in the biopsy and stool and disseminated abdominal tuberculosi was diagnosed. INTERVENTIONS AND OUTCOMES: With anti-tuberculosis therapy, the masses regressed, and all cultures became sterile, sparing graft function. LESSONS: This case emphasizes how variable and unspecific the presentation of tuberculosis in kidney transplant recipients may be and that tuberculosis constitutes a relevant risk also in the long-term post-transplant course.


Asunto(s)
Neoplasias del Colon/diagnóstico , Complicaciones Posoperatorias/diagnóstico , Tuberculosis Gastrointestinal/diagnóstico , Antituberculosos/uso terapéutico , Diagnóstico Diferencial , Femenino , Humanos , Trasplante de Riñón , Persona de Mediana Edad , Tuberculosis Gastrointestinal/tratamiento farmacológico
10.
PLoS Genet ; 15(4): e1008088, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-31034465

RESUMEN

PIK3C2A is a class II member of the phosphoinositide 3-kinase (PI3K) family that catalyzes the phosphorylation of phosphatidylinositol (PI) into PI(3)P and the phosphorylation of PI(4)P into PI(3,4)P2. At the cellular level, PIK3C2A is critical for the formation of cilia and for receptor mediated endocytosis, among other biological functions. We identified homozygous loss-of-function mutations in PIK3C2A in children from three independent consanguineous families with short stature, coarse facial features, cataracts with secondary glaucoma, multiple skeletal abnormalities, neurological manifestations, among other findings. Cellular studies of patient-derived fibroblasts found that they lacked PIK3C2A protein, had impaired cilia formation and function, and demonstrated reduced proliferative capacity. Collectively, the genetic and molecular data implicate mutations in PIK3C2A in a new Mendelian disorder of PI metabolism, thereby shedding light on the critical role of a class II PI3K in growth, vision, skeletal formation and neurological development. In particular, the considerable phenotypic overlap, yet distinct features, between this syndrome and Lowe's syndrome, which is caused by mutations in the PI-5-phosphatase OCRL, highlight the key role of PI metabolizing enzymes in specific developmental processes and demonstrate the unique non-redundant functions of each enzyme. This discovery expands what is known about disorders of PI metabolism and helps unravel the role of PIK3C2A and class II PI3Ks in health and disease.


Asunto(s)
Enfermedades del Desarrollo Óseo/genética , Catarata/genética , Trastornos de la Motilidad Ciliar/genética , Enanismo/genética , Mutación , Fosfatidilinositol 3-Quinasas/genética , Adolescente , Adulto , Niño , Consanguinidad , Femenino , Fibroblastos/metabolismo , Humanos , Masculino , Linaje , Fenotipo , Adulto Joven
11.
J Am Soc Nephrol ; 29(9): 2298-2309, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30049680

RESUMEN

BACKGROUND: Providing the correct diagnosis for patients with tubulointerstitial kidney disease and secondary degenerative disorders, such as hypertension, remains a challenge. The autosomal dominant tubulointerstitial kidney disease (ADTKD) subtype caused by MUC1 mutations (ADTKD-MUC1) is particularly difficult to diagnose, because the mutational hotspot is a complex repeat domain, inaccessible with routine sequencing techniques. Here, we further evaluated SNaPshot minisequencing as a technique for diagnosing ADTKD-MUC1 and assessed immunodetection of the disease-associated mucin 1 frameshift protein (MUC1-fs) as a nongenetic technique. METHODS: We re-evaluated detection of MUC1 mutations by targeted repeat enrichment and SNaPshot minisequencing by haplotype reconstruction via microsatellite analysis in three independent ADTKD-MUC1 families. Additionally, we generated rabbit polyclonal antibodies against MUC1-fs and evaluated immunodetection of wild-type and mutated allele products in human kidney biopsy specimens. RESULTS: The detection of MUC1 mutations by SNaPshot minisequencing was robust. Immunostaining with our MUC1-fs antibodies and an MUC1 antibody showed that both proteins are readily detectable in human ADTKD-MUC1 kidneys, with mucin 1 localized to the apical membrane and MUC1-fs abundantly distributed throughout the cytoplasm. Notably, immunohistochemical analysis of MUC1-fs expression in clinical kidney samples facilitated reliable prediction of the disease status of individual patients. CONCLUSIONS: Diagnosing ADTKD-MUC1 by molecular genetics is possible, but it is technically demanding and labor intensive. However, immunohistochemistry on kidney biopsy specimens is feasible for nongenetic diagnosis of ADTKD-MUC1 and therefore, a valid method to select families for further diagnostics. Our data are compatible with the hypothesis that specific molecular effects of MUC1-fs underlie the pathogenesis of this disease.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Predisposición Genética a la Enfermedad/epidemiología , Mucina-1/genética , Mutación/genética , Riñón Poliquístico Autosómico Dominante/genética , Adulto , Alelos , Animales , Biopsia con Aguja , Estudios de Cohortes , Femenino , Haplotipos , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Nefritis Intersticial/genética , Nefritis Intersticial/patología , Linaje , Riñón Poliquístico Autosómico Dominante/patología , Conejos , Estudios Retrospectivos , Medición de Riesgo , Sensibilidad y Especificidad
12.
J Cancer ; 8(10): 1809-1817, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28819378

RESUMEN

The Hypoxia Inducible Transcription Factor (HIF) is the master regulator of cellular response to hypoxic adaptation. Solid tumors inevitably harbour hypoxic regions with subsequent stabilization and activation of HIF and HIF target genes due to poor vascularization and rapid growth. The mammalian target of rapamycin (mTOR) is a global regulator of cellular growth and proliferation, which can also regulate HIF expression independantly of hypoxia via specific activation of cellular translation and transcription. An effective blockade of mTOR results in attenuation of HIF under hypoxic conditions in vitro. This mechanism could enable a simultaneous inhibition of both the mTOR- and the HIF-pathway, resulting in an effective tool for cancer targeting. We set out to analyze the effect of mTOR inhibition and the involvement of mTOR regulation on HIF in vivo in a subcutaneous xenograft model in nude mice. Our results demonstrate that mTOR inhibition in our model leads to a clear reduction in tumor growth of various cellular origins, most likely due to inhibition of cellular proliferation. Moreover, these effects can also be achieved independently of the HIF status of the tumor cells. The HIF levels per se seem to remain unaffected by mTOR inhibition, probably due to the profound hypoxic environment in these threedimensional structures, consequently leading to a strong HIF stabillization. Therefore, treatment of these experimental tumors with mTOR inhibitors is an effective tool to achieve size regression. The involvement of and the effect on HIF in this in vivo setting is nevertheless negligible.

13.
PLoS Genet ; 13(3): e1006620, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28267784

RESUMEN

Tubulointerstitial kidney disease is an important cause of progressive renal failure whose aetiology is incompletely understood. We analysed a large pedigree with maternally inherited tubulointerstitial kidney disease and identified a homoplasmic substitution in the control region of the mitochondrial genome (m.547A>T). While mutations in mtDNA coding sequence are a well recognised cause of disease affecting multiple organs, mutations in the control region have never been shown to cause disease. Strikingly, our patients did not have classical features of mitochondrial disease. Patient fibroblasts showed reduced levels of mitochondrial tRNAPhe, tRNALeu1 and reduced mitochondrial protein translation and respiration. Mitochondrial transfer demonstrated mitochondrial transmission of the defect and in vitro assays showed reduced activity of the heavy strand promoter. We also identified further kindreds with the same phenotype carrying a homoplasmic mutation in mitochondrial tRNAPhe (m.616T>C). Thus mutations in mitochondrial DNA can cause maternally inherited renal disease, likely mediated through reduced function of mitochondrial tRNAPhe.


Asunto(s)
ADN Mitocondrial/genética , Enfermedades Renales/genética , Túbulos Renales/patología , Mutación , Acetilglucosaminidasa/orina , Biopsia , Femenino , Fibroblastos/metabolismo , Ligamiento Genético , Humanos , Leucina/química , Masculino , Mitocondrias/metabolismo , Consumo de Oxígeno , Linaje , Fenotipo , Fenilalanina/química , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Músculo Cuádriceps/patología , ARN de Transferencia/genética
14.
PLoS One ; 10(11): e0140706, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26559531

RESUMEN

PURPOSE: Depression/anxiety, impaired Health-Related Quality of Life (HRQoL) and coping and resilience structures, are associated with increased mortality/poor outcome in chronic kidney disease (CKD) patients before (CKD/pre-KT) and after kidney (CKD-T) transplantation. Less is known about prevalence rates of psychiatric symptoms and impaired HRQoL of non-transplanted compared with transplanted patients. METHODS: In a cross-sectional study comparing 101 CKD/pre-KT patients with 151 cadaveric-transplanted (CKD-T) patients, we examined prevalence of depression/anxiety (HADS questionnaire) and coping, resilience and HRQoL (SF-12, Resilience-Scale and FKV-questionnaire). RESULTS: The prevalence of both depressive and anxiety symptoms was not significantly different between different pre-/and CKD-T patient groups. In CKD-T no significant relations of coping strategies with kidney function were identified. Furthermore, the Resilience Scales for acceptance and competence did not suggest any differences between the CKD/pre-KT and CKD-T subgroup. In the CKD/pre-KT patients, significant correlations were identified between the acceptance subscale and partnership, as well as between the competence subscale and older age/partnership. CONCLUSIONS: Both the CKD/pre-KT and CKD-T patients exhibited notable impairments in the HRQoL which which showed a comparable pattern of results. KT itself does not appear to be the main risk factor for the development of mental impairments.


Asunto(s)
Adaptación Psicológica , Ansiedad/psicología , Depresión/psicología , Trasplante de Riñón/psicología , Resiliencia Psicológica , Adulto , Anciano , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad
15.
Hum Immunol ; 76(10): 759-64, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26429312

RESUMEN

The family of Fc gamma receptors (FcγRs) is involved in mediating immunological effector functions. FcγRs are differentially expressed on immune cells and can act either activating or inhibitory, with FcγR2A belonging to the first group. The polymorphism H131R (rs1801274) in FCGR2A has been associated with acute rejection and can shift the overall balance between activating and inhibitory FcγRs. Anti-HLA allo-antibodies in transplant recipients have been identified as risk factor for organ survival after transplantation. In this study we genotyped FCGR2A H131R in 200 patients who had undergone kidney transplantation and experienced loss of graft function. FCGR2A polymorphism was related to graft survival and anti-HLA antibodies. Graft survival was calculated as the time interval between transplantation and return to chronic dialysis after transplantation. The gene frequency of FCGR2A R/R131 was found significantly more often in patients with earlier (⩽60months) compared to patients with later (>60months) graft failure. Overall patients homozygous for R/R131 had a significantly shorter graft survival, compared to H/H131 or H/R131 which is even more pronounced, when anti-HLA antibodies were present. These data suggest, that FCGR2A polymorphisms constitute a risk factor for graft loss following kidney transplantation and that this effect is related to anti-HLA antibodies.


Asunto(s)
Rechazo de Injerto/diagnóstico , Supervivencia de Injerto , Isoanticuerpos/biosíntesis , Trasplante de Riñón , Polimorfismo Genético , Receptores de IgG/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Alelos , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Expresión Génica , Frecuencia de los Genes , Rechazo de Injerto/genética , Rechazo de Injerto/inmunología , Rechazo de Injerto/patología , Antígenos HLA/genética , Antígenos HLA/inmunología , Heterocigoto , Homocigoto , Humanos , Riñón/inmunología , Riñón/patología , Riñón/cirugía , Masculino , Persona de Mediana Edad , Pronóstico , Receptores de IgG/inmunología , Diálisis Renal , Factores de Riesgo
16.
Kidney Blood Press Res ; 40(5): 443-51, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26304832

RESUMEN

BACKGROUND/AIMS: Hypercalcemia can result in nephrocalcinosis/nephrolithiasis and may lead to renal failure. Idiopathic infantile hypercalcemia is caused by mutations of the CYP24A1 gene, which regulates vitamin D activity. Classically infants present with hypercalcemia. Recently, a number of individuals have been reported with late onset clinical manifestation or late diagnosis in adulthood. All these patients are believed to show hypercalciuria. METHODS: We report a 24 year old patient of healthy consanguine parents. Genetic analysis was performed by Sanger sequencing of the CYP24A1 gene in the index patient and targeted exon 2 analysis of all other family members. RESULTS: The patient was hospitalized with severe malaise during an acute EBV-infection. He showed hypercalcemia > 3mmol/l and acute, hypovolemic renal failure with profound nephrocalcinosis, but no hypercalciuria. Genetic workup revealed a homozygous loss-of-function mutation p.E143del in the CYP24A1 gene. His clinically asymptomatic brother showed nephrocalcinosis of lesser degree. Repeatedly, low parathyroid hormone levels were detected in both brothers. CONCLUSION: This family displays the highly variable phenotype of CYP24A1 biallelic mutation carriers. CYP24A1 associated disease is an important differential diagnosis for the workup and counseling of infants as well as adults with hypercalcemia since a proper genetic diagnosis may result in therapeutic consequences.


Asunto(s)
Hipercalcemia/diagnóstico , Hipercalcemia/genética , Nefrocalcinosis/diagnóstico , Nefrocalcinosis/genética , Hermanos , Vitamina D3 24-Hidroxilasa/genética , Adulto , Diagnóstico Diferencial , Humanos , Hipercalcemia/complicaciones , Masculino , Nefrocalcinosis/complicaciones , Linaje , Adulto Joven
17.
Kidney Int ; 88(6): 1283-1292, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26200943

RESUMEN

Reduced nephron number predisposes to hypertension and kidney disease. Interaction of the branching ureteric bud and surrounding mesenchymal cells determines nephron number. Since oxygen supply may be critical for intrauterine development, we tested whether hypoxia and hypoxia-inducible factor-1α (HIF-1α) influence nephrogenesis. We found that HIF-1α is required for branching of MDCK cells. In addition, culture of metanephric mouse kidneys with ureteric bud cell-specific stabilization or knockout of HIF-1α revealed a positive impact of HIF-1α on nephrogenesis. In contrast, widespread stabilization of HIF-1α in metanephric kidneys through hypoxia or HIF stabilizers impaired nephrogenesis, and pharmacological HIF inhibition enhanced nephrogenesis. Several lines of evidence suggest an inhibitory effect through the hypoxia response of mesenchymal cells. HIF-1α was expressed in mesenchymal cells during nephrogenesis. Expression of the anti-branching factors Bmp4 and Vegfa, secreted by mesenchymal cells, was increased upon HIF stabilization. The conditioned medium from hypoxic metanephric kidneys inhibited MDCK branching, which was partially rescued by Vegfa antibodies. Thus, the effect of HIF-1α on nephrogenesis appears context dependent. While HIF-1α in the ureteric bud is of importance for proper branching morphogenesis, the net effect of hypoxia-induced HIF activation in the embryonic kidney appears to be mesenchymal cell-dependent inhibition of ureter branching.

18.
Kidney Int ; 86(3): 589-99, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24670410

RESUMEN

For decades, ill-defined autosomal dominant renal diseases have been reported, which originate from tubular cells and lead to tubular atrophy and interstitial fibrosis. These diseases are clinically indistinguishable, but caused by mutations in at least four different genes: UMOD, HNF1B, REN, and, as recently described, MUC1. Affected family members show renal fibrosis in the biopsy and gradually declining renal function, with renal failure usually occurring between the third and sixth decade of life. Here we describe 10 families and define eligibility criteria to consider this type of inherited disease, as well as propose a practicable approach for diagnosis. In contrast to what the frequently used term 'Medullary Cystic Kidney Disease' implies, development of (medullary) cysts is neither an early nor a typical feature, as determined by MRI. In addition to Sanger and gene panel sequencing of the four genes, we established SNaPshot minisequencing for the predescribed cytosine duplication within a distinct repeat region of MUC1 causing a frameshift. A mutation was found in 7 of 9 families (3 in UMOD and 4 in MUC1), with one indeterminate (UMOD p.T62P). On the basis of clinical and pathological characteristics we propose the term 'Autosomal Dominant Tubulointerstitial Kidney Disease' as an improved terminology. This should enhance recognition and correct diagnosis of affected individuals, facilitate genetic counseling, and stimulate research into the underlying pathophysiology.


Asunto(s)
Aberraciones Cromosómicas , Cromosomas Humanos Par 16 , Cromosomas Humanos Par 1 , Túbulos Renales/patología , Mucina-1/genética , Nefritis Intersticial/genética , Nefritis Intersticial/patología , Uromodulina/genética , Atrofia , Femenino , Fibrosis , Haplotipos , Humanos , Imagen por Resonancia Magnética , Masculino , Linaje , Terminología como Asunto
19.
Am J Physiol Renal Physiol ; 305(5): F734-44, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23825075

RESUMEN

The inhibitor of apoptosis protein survivin is a bifunctional molecule that regulates cellular division and survival. We have previously shown that survivin protein can be found at high concentrations in the adult kidney, particularly in the proximal tubules. Here, survivin is localized primarily at the apical membrane, a pattern that may indicate absorption of the protein. Several proteins in primary urine are internalized by megalin, an endocytosis receptor, which is in principle found in the same localization as survivin. Immunolabeling for survivin in different species confirmed survivin signal localizing to the apical membrane of the proximal tubule. Immunoelectron microscopy also showed apical localization of survivin in human kidneys. Furthermore, in polarized human primary tubular cells endogenous as well as external recombinant survivin is stored in the apical region of the cells. Costaining of survivin and megalin by immunohistochemistry and immunoelectron microscopy confirmed colocalization. Finally, by surface plasmon resonance we were able to demonstrate that survivin binds megalin and cubilin and that megalin knockout mice lose survivin through the urine. Survivin accumulates at the apical membrane of the renal tubule by reuptake, which is achieved by the endocytic receptor megalin, collaborating with cubilin. For this to occur, survivin will have to circulate in the blood and be filtered into the primary urine. It is not known at this stage what the functional role of tubular survivin is. However, a small number of experimental and clinical reports implicate that renal survivin is important for functional integrity of the kidney.


Asunto(s)
Proteínas Inhibidoras de la Apoptosis/metabolismo , Túbulos Renales Proximales/fisiología , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/fisiología , Proteínas Represoras/metabolismo , Animales , Células Cultivadas , Humanos , Ratones , Ratones Noqueados , Microscopía Confocal , Proteínas Asociadas a Microtúbulos/metabolismo , Ratas , Receptores de Superficie Celular/metabolismo , Survivin
20.
PLoS One ; 7(1): e31034, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22299048

RESUMEN

The Hypoxia-inducible transcription Factor (HIF) represents an important adaptive mechanism under hypoxia, whereas sustained activation may also have deleterious effects. HIF activity is determined by the oxygen regulated α-subunits HIF-1α or HIF-2α. Both are regulated by oxygen dependent degradation, which is controlled by the tumor suppressor "von Hippel-Lindau" (VHL), the gatekeeper of renal tubular growth control. HIF appears to play a particular role for the kidney, where renal EPO production, organ preservation from ischemia-reperfusion injury and renal tumorigenesis are prominent examples. Whereas HIF-1α is inducible in physiological renal mouse, rat and human tubular epithelia, HIF-2α is never detected in these cells, in any species. In contrast, distinct early lesions of biallelic VHL inactivation in kidneys of the hereditary VHL syndrome show strong HIF-2α expression. Furthermore, knockout of VHL in the mouse tubular apparatus enables HIF-2α expression. Continuous transgenic expression of HIF-2α by the Ksp-Cadherin promotor leads to renal fibrosis and insufficiency, next to multiple renal cysts. In conclusion, VHL appears to specifically repress HIF-2α in renal epithelia. Unphysiological expression of HIF-2α in tubular epithelia has deleterious effects. Our data are compatible with dedifferentiation of renal epithelial cells by sustained HIF-2α expression. However, HIF-2α overexpression alone is insufficient to induce tumors. Thus, our data bear implications for renal tumorigenesis, epithelial differentiation and renal repair mechanisms.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Expresión Génica , Enfermedades Renales Quísticas/genética , Túbulos Renales/metabolismo , Túbulos Renales/patología , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células COS , Chlorocebus aethiops , Fibrosis/genética , Expresión Génica/fisiología , Silenciador del Gen/fisiología , Células HEK293 , Células HeLa , Humanos , Enfermedades Renales Quísticas/metabolismo , Enfermedades Renales Quísticas/patología , Túbulos Renales/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Zarigüeyas , Ratas , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/antagonistas & inhibidores , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...