Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Matrix Biol ; 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39009171

RESUMEN

Post-mitotic, non-proliferative dermal fibroblasts have crucial functions in maintenance and restoration of tissue homeostasis. They are involved in essential processes such as wound healing, pigmentation and hair growth, but also tumor development and aging-associated diseases. These processes are energetically highly demanding and error prone when mitochondrial damage occurs. However, mitochondrial function in fibroblasts and the influence of mitochondrial dysfunction on fibroblast-specific demands are still unclear. To address these questions, we created a mouse model in which accelerated cell-specific mitochondrial DNA (mtDNA) damage accumulates. We crossed mice carrying a dominant-negative mutant of the mitochondrial replicative helicase Twinkle (RosaSTOP system) with mice that express fibroblast-specific Cre Recombinase (Collagen1A2 CreERT) which can be activated by Tamoxifen (TwinkleFIBRO). Thus, we are able to induce mtDNA deletions and duplications in specific cells, a process which resembles the physiological aging process in humans, where this damage accumulates in all tissues. Upon proliferation in vitro, Tamoxifen induced Twinkle fibroblasts deplete most of their mitochondrial DNA which, although not disturbing the stoichiometry of the respiratory chain complexes, leads to reduced ROS production and mitochondrial membrane potential as well as an anti-inflammatory and anti-fibrotic profile of the cells. In Sodium Azide treated wildtype fibroblasts, without a functioning respiratory chain, we observe the opposite, a rather pro-inflammatory and pro-fibrotic signature. Upon accumulation of mitochondrial DNA mutations in vivo the TwinkleFIBRO mice are protected from fibrosis development induced by intradermal Bleomycin injections. This is due to dampened differentiation of the dermal fibroblasts into α-smooth-muscle-actin positive myofibroblasts in TwinkleFIBRO mice. We thus provide evidence for striking differences of the impact that mtDNA mutations have in contrast to blunted mitochondrial function in dermal fibroblasts and skin homeostasis. These data contribute to improved understanding of mitochondrial function and dysfunction in skin and provide mechanistic insight into potential targets to treat skin fibrosis in the future.

2.
Brain ; 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38574200

RESUMEN

Degeneration of dopaminergic neurons in the substantia nigra and their striatal axon terminals causes cardinal motor symptoms of Parkinson's disease. In idiopathic cases, high levels of mitochondrial DNA alterations leading to mitochondrial dysfunction are a central feature of these vulnerable neurons. Here we present a mouse model expressing the K320E-variant of the mitochondrial helicase Twinkle in dopaminergic neurons, leading to accelerated mitochondrial DNA mutations. These K320E-TwinkleDaN mice showed normal motor function at 20 months of age, although ∼70% of nigral dopaminergic neurons had perished. Remaining neurons still preserved ∼75% of axon terminals in the dorsal striatum and enabled normal dopamine release. Transcriptome analysis and viral tracing confirmed compensatory axonal sprouting of the surviving neurons. We conclude that a small population of substantia nigra dopaminergic neurons is able to adapt to the accumulation of mitochondrial DNA mutations and maintain motor control.

3.
Eur J Cell Biol ; 103(2): 151399, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38412640

RESUMEN

Desmin gene mutations cause myopathies and cardiomyopathies. Our previously characterised R349P desminopathy mice, which carry the ortholog of the common human desmin mutation R350P, showed marked alterations in mitochondrial morphology and function in muscle tissue. By isolating skeletal muscle myoblasts from offspring of R349P desminopathy and p53 knock-out mice, we established an immortalised cellular disease model. Heterozygous and homozygous R349P desmin knock-in and wild-type myoblasts could be well differentiated into multinucleated spontaneously contracting myotubes. The desminopathy myoblasts showed the characteristic disruption of the desmin cytoskeleton and desmin protein aggregation, and the desminopathy myotubes showed the characteristic myofibrillar irregularities. Long-term electrical pulse stimulation promoted myotube differentiation and markedly increased their spontaneous contraction rate. In both heterozygous and homozygous R349P desminopathy myotubes, this treatment restored a regular myofibrillar cross-striation pattern as seen in wild-type myotubes. High-resolution respirometry of mitochondria purified from myotubes by density gradient ultracentrifugation revealed normal oxidative phosphorylation capacity, but a significantly reduced proton leak in mitochondria from the homozygous R349P desmin knock-in cells. Consistent with a reduced proton flux across the inner mitochondrial membrane, our quantitative proteomic analysis of the purified mitochondria revealed significantly reduced levels of ADP/ATP translocases in the homozygous R349P desmin knock-in genotype. As this alteration was also detected in the soleus muscle of R349P desminopathy mice, which, in contrast to the mitochondria purified from cultured cells, showed a variety of other dysregulated mitochondrial proteins, we consider this finding to be an early step in the pathogenesis of secondary mitochondriopathy in desminopathy.


Asunto(s)
Desmina , Fibras Musculares Esqueléticas , Animales , Desmina/metabolismo , Desmina/genética , Ratones , Fibras Musculares Esqueléticas/metabolismo , Técnicas de Sustitución del Gen , Protones , Mitocondrias/metabolismo , Distrofias Musculares , Cardiomiopatías
4.
Nat Commun ; 13(1): 6704, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36344526

RESUMEN

Understanding the mechanisms governing selective turnover of mutation-bearing mtDNA is fundamental to design therapeutic strategies against mtDNA diseases. Here, we show that specific mtDNA damage leads to an exacerbated mtDNA turnover, independent of canonical macroautophagy, but relying on lysosomal function and ATG5. Using proximity labeling and Twinkle as a nucleoid marker, we demonstrate that mtDNA damage induces membrane remodeling and endosomal recruitment in close proximity to mitochondrial nucleoid sub-compartments. Targeting of mitochondrial nucleoids is controlled by the ATAD3-SAMM50 axis, which is disrupted upon mtDNA damage. SAMM50 acts as a gatekeeper, influencing BAK clustering, controlling nucleoid release and facilitating transfer to endosomes. Here, VPS35 mediates maturation of early endosomes to late autophagy vesicles where degradation occurs. In addition, using a mouse model where mtDNA alterations cause impairment of muscle regeneration, we show that stimulation of lysosomal activity by rapamycin, selectively removes mtDNA deletions without affecting mtDNA copy number, ameliorating mitochondrial dysfunction. Taken together, our data demonstrates that upon mtDNA damage, mitochondrial nucleoids are eliminated outside the mitochondrial network through an endosomal-mitophagy pathway. With these results, we unveil the molecular players of a complex mechanism with multiple potential benefits to understand mtDNA related diseases, inherited, acquired or due to normal ageing.


Asunto(s)
ADN Mitocondrial , Membranas Mitocondriales , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Mitofagia
5.
Cell Rep ; 39(10): 110912, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35675769

RESUMEN

To elucidate the function of oxidative phosphorylation (OxPhos) during B cell differentiation, we employ CD23Cre-driven expression of the dominant-negative K320E mutant of the mitochondrial helicase Twinkle (DNT). DNT-expression depletes mitochondrial DNA during B cell maturation, reduces the abundance of respiratory chain protein subunits encoded by mitochondrial DNA, and, consequently, respiratory chain super-complexes in activated B cells. Whereas B cell development in DNT mice is normal, B cell proliferation, germinal centers, class switch to IgG, plasma cell maturation, and T cell-dependent as well as T cell-independent humoral immunity are diminished. DNT expression dampens OxPhos but increases glycolysis in lipopolysaccharide and B cell receptor-activated cells. Lipopolysaccharide-activated DNT-B cells exhibit altered metabolites of glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle and a lower amount of phosphatidic acid. Consequently, mTORC1 activity and BLIMP1 induction are curtailed, whereas HIF1α is stabilized. Hence, mitochondrial DNA controls the metabolism of activated B cells via OxPhos to foster humoral immunity.


Asunto(s)
Ciclo del Ácido Cítrico , Inmunidad Humoral , Animales , Linfocitos B , ADN Mitocondrial/metabolismo , Glucólisis/genética , Lipopolisacáridos/metabolismo , Ratones , Respiración
6.
J Cachexia Sarcopenia Muscle ; 13(4): 2132-2145, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35765148

RESUMEN

BACKGROUND: Mitochondrial dysfunction caused by mitochondrial (mtDNA) deletions have been associated with skeletal muscle atrophy and myofibre loss. However, whether such defects occurring in myofibres cause sarcopenia is unclear. Also, the contribution of mtDNA alterations in muscle stem cells (MuSCs) to sarcopenia remains to be investigated. METHODS: We expressed a dominant-negative variant of the mitochondrial helicase, which induces mtDNA alterations, specifically in differentiated myofibres (K320Eskm mice) and MuSCs (K320Emsc mice), respectively, and investigated their impact on muscle structure and function by immunohistochemistry, analysis of mtDNA and respiratory chain content, muscle transcriptome and functional tests. RESULTS: K320Eskm mice at 24 months of age had higher levels of mtDNA deletions compared with controls in soleus (SOL, 0.07673% vs. 0.00015%, P = 0.0167), extensor digitorum longus (EDL, 0.0649 vs. 0.000925, P = 0.0015) and gastrocnemius (GAS, 0.09353 vs. 0.000425, P = 0.0004). K320Eskm mice revealed a progressive increase in the proportion of cytochrome c oxidase deficient (COX- ) fibres in skeletal muscle cross sections, reaching a maximum of 3.03%, 4.36%, 13.58%, and 17.08% in EDL, SOL, tibialis anterior (TA) and GAS, respectively. However, mice did not show accelerated loss of muscle mass, muscle strength or physical performance. Histological analyses revealed ragged red fibres but also stimulated regeneration, indicating activation of MuSCs. RNAseq demonstrated enhanced expression of genes associated with protein synthesis, but also degradation, as well as muscle fibre differentiation and cell proliferation. In contrast, 7 days after destruction by cardiotoxin, regenerating TA of K320Emsc mice showed 30% of COX- fibres. Notably, regenerated muscle showed dystrophic changes, increased fibrosis (2.5% vs. 1.6%, P = 0.0003), increased abundance of fat cells (2.76% vs. 0.23%, P = 0.0144) and reduced muscle mass (regenerated TA: 40.0 mg vs. 60.2 mg, P = 0.0171). In contrast to muscles from K320Eskm mice, freshly isolated MuSCs from aged K320Emsc mice were completely devoid of mtDNA alterations. However, after passaging, mtDNA copy number as well as respiratory chain subunits and p62 levels gradually decreased. CONCLUSIONS: Taken together, accumulation of large-scale mtDNA alterations in myofibres alone is not sufficient to cause sarcopenia. Expression of K320E-Twinkle is tolerated in quiescent MuSCs, but progressively leads to mtDNA and respiratory chain depletion upon activation, in vivo and in vitro, possibly caused by an increased mitochondrial removal. Altogether, our results suggest that the accumulation of mtDNA alterations in myofibres activates regeneration during aging, which leads to sarcopenia if such alterations have expanded in MuSCs as well.


Asunto(s)
Sarcopenia , Animales , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Ratones , Mitocondrias/metabolismo , Músculo Esquelético/patología , Regeneración , Sarcopenia/patología
7.
Neurol Genet ; 8(2): e660, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35252560

RESUMEN

BACKGROUND AND OBJECTIVES: We report the pathogenic sequence variant m.5789T>C in the anticodon stem of the mitochondrial tRNA for cysteine as a novel cause of neuropathy, ataxia, and retinitis pigmentosa (NARP), which is usually associated with pathogenic variants in the MT-ATP6 gene. METHODS: To address the correlation of oxidative phosphorylation deficiency with mutation loads, we performed genotyping on single laser-dissected skeletal muscle fibers. Stability of the mitochondrial tRNACys was investigated by Northern blotting. Accompanying deletions of the mitochondrial genome were detected by long-range PCR and their breakpoints were determined by sequencing of single-molecule amplicons. RESULTS: The sequence variant m.5789T>C, originating from the patient's mother, decreases the stability of the mitochondrial tRNA for cysteine by disrupting the anticodon stem, which subsequently leads to a combined oxidative phosphorylation deficiency. In parallel, we observed a prominent cluster of low-abundance somatic deletions with breakpoints in the immediate vicinity of the m.5789T>C variant. Strikingly, all deletion-carrying mitochondrial DNA (mtDNA) species, in which the corresponding nucleotide position was not removed, harbored the mutant allele, and none carried the wild-type allele. DISCUSSION: In addition to providing evidence for the novel association of a tRNA sequence alteration with NARP syndrome, our observations support the hypothesis that single nucleotide changes can lead to increased occurrence of site-specific mtDNA deletions through the formation of an imperfect repeat. This finding might be relevant for understanding mechanisms of deletion generation in the human mitochondrial genome.

8.
Front Mol Biosci ; 8: 676187, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34295920

RESUMEN

Mitochondrial dysfunction is a central feature of neurodegeneration within the central and peripheral nervous system, highlighting a strong dependence on proper mitochondrial function of neurons with especially high energy consumptions. The fitness of mitochondria critically depends on preservation of distinct processes, including the maintenance of their own genome, mitochondrial dynamics, quality control, and Ca2+ handling. These processes appear to be differently affected in common neurodegenerative diseases, such as Alzheimer's and Parkinson's disease, as well as in rare neurological disorders, including Huntington's disease, Amyotrophic Lateral Sclerosis and peripheral neuropathies. Strikingly, particular neuron populations of different morphology and function perish in these diseases, suggesting that cell-type specific factors contribute to the vulnerability to distinct mitochondrial defects. Here we review the disruption of mitochondrial processes in common as well as in rare neurological disorders and its impact on selective neurodegeneration. Understanding discrepancies and commonalities regarding mitochondrial dysfunction as well as individual neuronal demands will help to design new targets and to make use of already established treatments in order to improve treatment of these diseases.

10.
Sci Rep ; 10(1): 22037, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33328493

RESUMEN

The formation of dentin and enamel matrix depends on reciprocal interactions between epithelial-mesenchymal cells. To assess the role of mitochondrial function in amelogenesis and dentinogenesis, we studied postnatal incisor development in K320E-TwinkleEpi mice. In these mice, a loss of mitochondrial DNA (mtDNA), followed by a severe defect in the oxidative phosphorylation system is induced specifically in Keratin 14 (K14+) expressing epithelial cells. Histochemical staining showed severe reduction of cytochrome c oxidase activity only in K14+ epithelial cells. In mutant incisors, H&E staining showed severe defects in the ameloblasts, in the epithelial cells of the stratum intermedium and the papillary cell layer, but also a disturbed odontoblast layer. The lack of amelogenin in the enamel matrix of K320E-TwinkleEpi mice indicated that defective ameloblasts are not able to form extracellular enamel matrix proteins. In comparison to control incisors, von Kossa staining showed enamel biomineralization defects and dentin matrix impairment. In mutant incisor, TUNEL staining and ultrastructural analyses revealed differentiation defects, while in hair follicle cells apoptosis is prevalent. We concluded that mitochondrial oxidative phosphorylation in epithelial cells of the developed incisor is required for Ca2+ homeostasis to regulate the formation of enamel matrix and induce the differentiation of ectomesenchymal cells into odontoblasts.


Asunto(s)
Esmalte Dental/metabolismo , Dentina/metabolismo , Células Epiteliales/metabolismo , Incisivo/crecimiento & desarrollo , Incisivo/metabolismo , Mitocondrias/metabolismo , Fosforilación Oxidativa , Amelogenina/metabolismo , Animales , Animales Recién Nacidos , Complejo IV de Transporte de Electrones/metabolismo , Incisivo/ultraestructura , Ratones Transgénicos , Mutación/genética , Succinato Deshidrogenasa/metabolismo
11.
PLoS Genet ; 16(12): e1009242, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33315859

RESUMEN

Deletions and duplications in mitochondrial DNA (mtDNA) cause mitochondrial disease and accumulate in conditions such as cancer and age-related disorders, but validated high-throughput methodology that can readily detect and discriminate between these two types of events is lacking. Here we establish a computational method, MitoSAlt, for accurate identification, quantification and visualization of mtDNA deletions and duplications from genomic sequencing data. Our method was tested on simulated sequencing reads and human patient samples with single deletions and duplications to verify its accuracy. Application to mouse models of mtDNA maintenance disease demonstrated the ability to detect deletions and duplications even at low levels of heteroplasmy.


Asunto(s)
ADN Mitocondrial/genética , Eliminación de Gen , Duplicación de Gen , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Animales , ADN Mitocondrial/química , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Ratones , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN/normas
12.
Invest Ophthalmol Vis Sci ; 61(12): 14, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33057669

RESUMEN

Purpose: The purpose of this study was to gain insights on the pathogenesis of chronic progressive external ophthalmoplegia, thus we investigated the vulnerability of five extra ocular muscles (EOMs) fiber types to pathogenic mitochondrial DNA deletions in a mouse model expressing a mutated mitochondrial helicase TWINKLE. Methods: Consecutive pairs of EOM sections were analyzed by cytochrome C oxidase (COX)/succinate dehydrogenase (SDH) assay and fiber type specific immunohistochemistry (type I, IIA, IIB, embryonic, and EOM-specific staining). Results: The mean average of COX deficient fibers (COX-) in the recti muscles of mutant mice was 1.04 ± 0.52% at 12 months and increased with age (7.01 ± 1.53% at 24 months). A significant proportion of these COX- fibers were of the fast-twitch, glycolytic type IIB (> 50% and > 35% total COX- fibers at 12 and 24 months, respectively), whereas embryonic myosin heavy chain-expressing fibers were almost completely spared. Furthermore, the proportion of COX- fibers in the type IIB-rich retractor bulbi muscle was > 2-fold higher compared to the M. recti at both 12 (2.6 ± 0.78%) and 24 months (20.85 ± 2.69%). Collectively, these results demonstrate a selective vulnerability of type IIB fibers to mitochondrial DNA (mtDNA) deletions in EOMs and retractor bulbi muscle. We also show that EOMs of mutant mice display histopathological abnormalities, including altered fiber type composition, increased fibrosis, ragged red fibers, and infiltration of mononucleated nonmuscle cells. Conclusions: Our results point to the existence of fiber type IIB-intrinsic factors and/or molecular mechanisms that predispose them to increased generation, clonal expansion, and detrimental effects of mtDNA deletions.


Asunto(s)
ADN Mitocondrial/genética , Mitocondrias Musculares/patología , Enfermedades Mitocondriales/patología , Fibras Musculares de Contracción Rápida/patología , Músculos Oculomotores/patología , Animales , Complejo IV de Transporte de Electrones/metabolismo , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias Musculares/enzimología , Enfermedades Mitocondriales/enzimología , Enfermedades Mitocondriales/genética , Fibras Musculares de Contracción Rápida/enzimología , Fibras Musculares Esqueléticas/enzimología , Fibras Musculares Esqueléticas/patología , Cadenas Pesadas de Miosina/metabolismo , Músculos Oculomotores/enzimología , Oftalmoplejía Externa Progresiva Crónica/etiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Succinato Deshidrogenasa/metabolismo
13.
Mol Neurobiol ; 57(9): 3646-3657, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32564285

RESUMEN

Understanding non-motor symptoms of Parkinson's disease is important in order to unravel the underlying molecular mechanisms of the disease. Olfactory dysfunction is an early stage, non-motor symptom which occurs in 95% of Parkinson's disease patients. Mitochondrial dysfunction is a key feature in Parkinson's disease and importantly contributes to the selective loss of dopaminergic neurons the substantia nigra pars compacta. The olfactory bulb, the first olfactory processing station, also contains dopaminergic neurons, which modulate odor information and thereby enable odor detection as well as odor discrimination. MitoPark mice are a genetic model for Parkinson's disease with severe mitochondrial dysfunction, reproducing the differential vulnerability of dopaminergic neurons in the midbrain. These animals were used to investigate the impact of mitochondrial dysfunction on olfactory-related behavior and olfactory bulb dopaminergic neuron survival. Odor detection was severely impaired in MitoPark mice. Interestingly, only the small anaxonic dopaminergic subpopulation, which is continuously replenished by neurogenesis, was moderately reduced in number, much less compared with dopaminergic neurons in the midbrain. As a potential compensatory response, an enhanced mobilization of progenitor cells was found in the subventricular zone. These results reveal a high robustness of dopaminergic neurons located in the olfactory bulb towards mitochondrial impairment, in striking contrast to their midbrain counterparts.


Asunto(s)
Neuronas Dopaminérgicas/patología , Mitocondrias/patología , Odorantes , Bulbo Olfatorio/patología , Animales , Recuento de Células , Proteínas de Unión al ADN/metabolismo , Transporte de Electrón , Proteínas del Grupo de Alta Movilidad/metabolismo , Mesencéfalo/patología , Ratones Endogámicos C57BL , Neostriado/metabolismo , Degeneración Nerviosa/patología , Factor de Transcripción PAX6/metabolismo , Células Madre/metabolismo , Sustancia Negra/metabolismo , Factores de Tiempo , Tirosina 3-Monooxigenasa/metabolismo
14.
Carcinogenesis ; 41(12): 1735-1745, 2020 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-32255484

RESUMEN

Functioning mitochondria are crucial for cancer metabolism, but aerobic glycolysis is still considered to be an important pathway for energy production in many tumor cells. Here we show that two well established, classic Hodgkin lymphoma (cHL) cell lines harbor deleterious variants within mitochondrial DNA (mtDNA) and thus exhibit reduced steady-state levels of respiratory chain complexes. However, instead of resulting in the expected bioenergetic defect, these mtDNA variants evoke a retrograde signaling response that induces mitochondrial biogenesis and ultimately results in increased mitochondrial mass as well as function and enhances proliferation in vitro as well as tumor growth in mice in vivo. When complex I assembly was impaired by knockdown of one of its subunits, this led to further increased mitochondrial mass and function and, consequently, further accelerated tumor growth in vivo. In contrast, inhibition of mitochondrial respiration in vivo by the mitochondrial complex I inhibitor metformin efficiently slowed down growth. We conclude that, as a new mechanism, mildly deleterious mtDNA variants in cHL cancer cells cause an increase of mitochondrial mass and enhanced function as a compensatory effect using a retrograde signaling pathway, which provides an obvious advantage for tumor growth.


Asunto(s)
Carcinogénesis/patología , ADN Mitocondrial/genética , Enfermedad de Hodgkin/patología , Mutación , Biogénesis de Organelos , Animales , Apoptosis , Carcinogénesis/genética , Carcinogénesis/metabolismo , Proliferación Celular , Enfermedad de Hodgkin/genética , Enfermedad de Hodgkin/metabolismo , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Fosforilación Oxidativa , Células de Reed-Sternberg , Ensayos Antitumor por Modelo de Xenoinjerto
15.
J Neurosci ; 40(9): 1975-1986, 2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-32005765

RESUMEN

Mitochondrial dysfunction is critically involved in Parkinson's disease, characterized by loss of dopaminergic neurons (DaNs) in the substantia nigra (SNc), whereas DaNs in the neighboring ventral tegmental area (VTA) are much less affected. In contrast to VTA, SNc DaNs engage calcium channels to generate action potentials, which lead to oxidant stress by yet unknown pathways. To determine the molecular mechanisms linking calcium load with selective cell death in the presence of mitochondrial deficiency, we analyzed the mitochondrial redox state and the mitochondrial membrane potential in mice of both sexes with genetically induced, severe mitochondrial dysfunction in DaNs (MitoPark mice), at the same time expressing a redox-sensitive GFP targeted to the mitochondrial matrix. Despite mitochondrial insufficiency in all DaNs, exclusively SNc neurons showed an oxidized redox-system, i.e., a low reduced/oxidized glutathione (GSH-GSSG) ratio. This was mimicked by cyanide, but not by rotenone or antimycin A, making the involvement of reactive oxygen species rather unlikely. Surprisingly, a high mitochondrial inner membrane potential was maintained in MitoPark SNc DaNs. Antagonizing calcium influx into the cell and into mitochondria, respectively, rescued the disturbed redox ratio and induced further hyperpolarization of the inner mitochondrial membrane. Our data therefore show that the constant calcium load in SNc DaNs is counterbalanced by a high mitochondrial inner membrane potential, even under conditions of severe mitochondrial dysfunction, but triggers a detrimental imbalance in the mitochondrial redox system, which will lead to neuron death. Our findings thus reveal a new mechanism, redox imbalance, which underlies the differential vulnerability of DaNs to mitochondrial defects.SIGNIFICANCE STATEMENT Parkinson's disease is characterized by the preferential degeneration of dopaminergic neurons (DaNs) of the substantia nigra pars compacta (SNc), resulting in the characteristic hypokinesia in patients. Ubiquitous pathological triggers cannot be responsible for the selective neuron loss. Here we show that mitochondrial impairment together with elevated calcium burden destabilize the mitochondrial antioxidant defense only in SNc DaNs, and thus promote the increased vulnerability of this neuron population.


Asunto(s)
Antioxidantes/metabolismo , Calcio/toxicidad , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Sustancia Negra/metabolismo , Sustancia Negra/patología , Animales , Calbindina 1/metabolismo , Muerte Celular , Cianuros/toxicidad , Femenino , Masculino , Potencial de la Membrana Mitocondrial , Ratones , Membranas Mitocondriales/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Área Tegmental Ventral/metabolismo , Área Tegmental Ventral/patología
17.
Hum Mol Genet ; 28(16): 2711-2719, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31039582

RESUMEN

Mitochondrial disorders are clinically and genetically heterogeneous and are associated with a variety of disease mechanisms. Defects of mitochondrial protein synthesis account for the largest subgroup of disorders manifesting with impaired respiratory chain capacity; yet, only a few have been linked to dysfunction in the protein components of the mitochondrial ribosomes. Here, we report a subject presenting with dyskinetic cerebral palsy and partial agenesis of the corpus callosum, while histochemical and biochemical analyses of skeletal muscle revealed signs of mitochondrial myopathy. Using exome sequencing, we identified a homozygous variant c.215C>T in MRPS25, which encodes for a structural component of the 28S small subunit of the mitochondrial ribosome (mS25). The variant segregated with the disease and substitutes a highly conserved proline residue with leucine (p.P72L) that, based on the high-resolution structure of the 28S ribosome, is predicted to compromise inter-protein contacts and destabilize the small subunit. Concordant with the in silico analysis, patient's fibroblasts showed decreased levels of MRPS25 and other components of the 28S subunit. Moreover, assembled 28S subunits were scarce in the fibroblasts with mutant mS25 leading to impaired mitochondrial translation and decreased levels of multiple respiratory chain subunits. Crucially, these abnormalities were rescued by transgenic expression of wild-type MRPS25 in the mutant fibroblasts. Collectively, our data demonstrate the pathogenicity of the p.P72L variant and identify MRPS25 mutations as a new cause of mitochondrial translation defect.


Asunto(s)
Mitocondrias/genética , Encefalomiopatías Mitocondriales/genética , Proteínas Mitocondriales/genética , Mutación , Biosíntesis de Proteínas , Proteínas Ribosómicas/genética , Adulto , Biomarcadores , Fibroblastos/metabolismo , Predisposición Genética a la Enfermedad , Homocigoto , Humanos , Imagen por Resonancia Magnética , Masculino , Mitocondrias/metabolismo , Encefalomiopatías Mitocondriales/diagnóstico , Encefalomiopatías Mitocondriales/metabolismo , Modelos Biológicos , Linaje , Fenotipo , Secuenciación del Exoma
18.
J Cell Biol ; 218(6): 1853-1870, 2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31085560

RESUMEN

In childhood, skeletal growth is driven by transient expansion of cartilage in the growth plate. The common belief is that energy production in this hypoxic tissue mainly relies on anaerobic glycolysis and not on mitochondrial respiratory chain (RC) activity. However, children with mitochondrial diseases causing RC dysfunction often present with short stature, which indicates that RC activity may be essential for cartilage-mediated skeletal growth. To elucidate the role of the mitochondrial RC in cartilage growth and pathology, we generated mice with impaired RC function in cartilage. These mice develop normally until birth, but their later growth is retarded. A detailed molecular analysis revealed that metabolic signaling and extracellular matrix formation is disturbed and induces cell death at the cartilage-bone junction to cause a chondrodysplasia-like phenotype. Hence, the results demonstrate the overall importance of the metabolic switch from fetal glycolysis to postnatal RC activation in growth plate cartilage and explain why RC dysfunction can cause short stature in children with mitochondrial diseases.


Asunto(s)
Cartílago/patología , Condrocitos/patología , Proteínas del Complejo de Cadena de Transporte de Electrón/antagonistas & inhibidores , Trastornos del Crecimiento/complicaciones , Placa de Crecimiento/patología , Enfermedades Mitocondriales/etiología , Animales , Cartílago/metabolismo , Diferenciación Celular , Condrocitos/metabolismo , Colágeno Tipo II/fisiología , ADN Helicasas/fisiología , Transporte de Electrón , Metabolismo Energético , Trastornos del Crecimiento/metabolismo , Trastornos del Crecimiento/patología , Placa de Crecimiento/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Proteínas Mitocondriales/fisiología , Transducción de Señal
19.
Diabetes ; 68(5): 918-931, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30833469

RESUMEN

Low 25-hydroxyvitamin D levels correlate with the prevalence of diabetes; however, the mechanisms remain uncertain. Here, we show that nutritional deprivation-responsive mechanisms regulate vitamin D metabolism. Both fasting and diabetes suppressed hepatic cytochrome P450 (CYP) 2R1, the main vitamin D 25-hydroxylase responsible for the first bioactivation step. Overexpression of coactivator peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α), induced physiologically by fasting and pathologically in diabetes, resulted in dramatic downregulation of CYP2R1 in mouse hepatocytes in an estrogen-related receptor α (ERRα)-dependent manner. However, PGC-1α knockout did not prevent fasting-induced suppression of CYP2R1 in the liver, indicating that additional factors contribute to the CYP2R1 repression. Furthermore, glucocorticoid receptor (GR) activation repressed the liver CYP2R1, suggesting GR involvement in the regulation of CYP2R1. GR antagonist mifepristone partially prevented CYP2R1 repression during fasting, suggesting that glucocorticoids and GR contribute to the CYP2R1 repression during fasting. Moreover, fasting upregulated the vitamin D catabolizing CYP24A1 in the kidney through the PGC-1α-ERRα pathway. Our study uncovers a molecular mechanism for vitamin D deficiency in diabetes and reveals a novel negative feedback mechanism that controls crosstalk between energy homeostasis and the vitamin D pathway.


Asunto(s)
Diabetes Mellitus/metabolismo , Ayuno/sangre , Factores de Transcripción/sangre , Factores de Transcripción/metabolismo , Deficiencia de Vitamina D/metabolismo , Vitamina D/sangre , Vitamina D/metabolismo , Animales , Colestanotriol 26-Monooxigenasa/metabolismo , Diabetes Mellitus/sangre , Ayuno/fisiología , Hígado/metabolismo , Ratones , Mifepristona/farmacología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Receptores de Estrógenos/metabolismo , Receptores de Glucocorticoides/antagonistas & inhibidores , Receptores de Glucocorticoides/metabolismo , Deficiencia de Vitamina D/sangre , Receptor Relacionado con Estrógeno ERRalfa
20.
Physiol Rep ; 7(3): e13975, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30740930

RESUMEN

Diabetes mellitus (DM) is a metabolic disorder with high prevalence, and a major risk factor for macro- and microvascular abnormalities. This study was undertaken to explore the mechanisms of hypercontractility of murine femoral arteries (FA) obtained from mice with streptozotocin (STZ)-induced diabetes and its relation to the phosphorylation profile of the myosin phosphatase target subunit 1, MYPT1. The immunoreactivity of MYPT1 toward phospho-MYPT1-T696, MYPT1-T853, or MYPT1-S695, used as a read out for MYPT1 phosphorylation, has been studied by Western Blotting. Contractile activity of FA from control and STZ mice has been studied by wire myography. At basal conditions (no treatment), the immunoreactivity of MYPT1-T696/T853 was ~2-fold higher in the STZ arteries compared with controls. No changes in MYPT1-T696/853 phosphorylation were observed after stimulation with the Thromboxan-A2 analog, U46619. Neither basal nor U46619-stimulated phosphorylation of MYPT1 at S695 was affected by STZ treatment. Mechanical distensibility and basal tone of FA obtained from STZ animals were similar to controls. Maximal force after treatment of FA with the contractile agonists phenylephrine (10 µmol/L) or U46619 (1 µmol/L) was augmented in the arteries of STZ mice by ~2- and ~1.5-fold, respectively. In summary, our study suggests that development of a hypercontractile phenotype in murine FA in STZ diabetes is at least partially related to an increase in phosphorylation of MLCP at MYPT1-T696/853. Interestingly, the phosphorylation at S695 site was not altered in STZ-induced diabetes, supporting the view that S695 may serve as a sensor for mechanical activity which is not directly involved in tone regulation.


Asunto(s)
Diabetes Mellitus Experimental/enzimología , Angiopatías Diabéticas/enzimología , Arteria Femoral/metabolismo , Fosfatasa de Miosina de Cadena Ligera/metabolismo , Vasoconstricción , Animales , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/fisiopatología , Angiopatías Diabéticas/inducido químicamente , Angiopatías Diabéticas/fisiopatología , Arteria Femoral/efectos de los fármacos , Arteria Femoral/fisiopatología , Masculino , Ratones Endogámicos C57BL , Fosforilación , Transducción de Señal , Estreptozocina , Treonina , Vasoconstricción/efectos de los fármacos , Vasoconstrictores/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...