Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Nature ; 622(7983): 619-626, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37758950

RESUMEN

Postnatal maturation of cardiomyocytes is characterized by a metabolic switch from glycolysis to fatty acid oxidation, chromatin reconfiguration and exit from the cell cycle, instating a barrier for adult heart regeneration1,2. Here, to explore whether metabolic reprogramming can overcome this barrier and enable heart regeneration, we abrogate fatty acid oxidation in cardiomyocytes by inactivation of Cpt1b. We find that disablement of fatty acid oxidation in cardiomyocytes improves resistance to hypoxia and stimulates cardiomyocyte proliferation, allowing heart regeneration after ischaemia-reperfusion injury. Metabolic studies reveal profound changes in energy metabolism and accumulation of α-ketoglutarate in Cpt1b-mutant cardiomyocytes, leading to activation of the α-ketoglutarate-dependent lysine demethylase KDM5 (ref. 3). Activated KDM5 demethylates broad H3K4me3 domains in genes that drive cardiomyocyte maturation, lowering their transcription levels and shifting cardiomyocytes into a less mature state, thereby promoting proliferation. We conclude that metabolic maturation shapes the epigenetic landscape of cardiomyocytes, creating a roadblock for further cell divisions. Reversal of this process allows repair of damaged hearts.


Asunto(s)
Reprogramación Celular , Ácidos Grasos , Corazón , Regeneración , Animales , Ratones , Carnitina O-Palmitoiltransferasa/deficiencia , Carnitina O-Palmitoiltransferasa/genética , Hipoxia de la Célula , Proliferación Celular , Metabolismo Energético , Activación Enzimática , Epigénesis Genética , Ácidos Grasos/metabolismo , Corazón/fisiología , Histona Demetilasas/metabolismo , Ácidos Cetoglutáricos/metabolismo , Mutación , Miocardio , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Oxidación-Reducción , Regeneración/fisiología , Daño por Reperfusión , Transcripción Genética
3.
Circ Res ; 131(7): 580-597, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36000401

RESUMEN

BACKGROUND: ADAR1 (adenosine deaminase acting on RNA-1)-mediated adenosine to inosine (A-to-I) RNA editing plays an essential role for distinguishing endogenous from exogenous RNAs, preventing autoinflammatory ADAR1 also regulates cellular processes by recoding specific mRNAs, thereby altering protein functions, but may also act in an editing-independent manner. The specific role of ADAR1 in cardiomyocytes and its mode of action in the heart is not fully understood. To determine the role of ADAR1 in the heart, we used different mutant mouse strains, which allows to distinguish immunogenic, editing-dependent, and editing-independent functions of ADAR1. METHODS: Different Adar1-mutant mouse strains were employed for gene deletion or specific inactivation of ADAR1 enzymatic activity in cardiomyocytes, either alone or in combination with Ifih1 (interferon induced with helicase C domain 1) or Irf7 (interferon regulatory factor 7) gene inactivation. Mutant mice were investigated by immunofluorescence, Western blot, RNAseq, proteomics, and functional MRI analysis. RESULTS: Inactivation of Adar1 in cardiomyocytes resulted in late-onset autoinflammatory myocarditis progressing into dilated cardiomyopathy and heart failure at 6 months of age. Adar1 depletion activated interferon signaling genes but not NFκB (nuclear factor kappa B) signaling or apoptosis and reduced cardiac hypertrophy during pressure overload via induction of Irf7. Additional inactivation of the cytosolic RNA sensor MDA5 (melanoma differentiation-associated gene 5; encoded by the Ifih1 gene) in Adar1 mutant mice prevented activation of interferon signaling gene and delayed heart failure but did not prevent lethality after 8.5 months. In contrast, compound mutants only expressing catalytically inactive ADAR1 in an Ifih1-mutant background were completely normal. Inactivation of Irf7 attenuated the phenotype of Adar1-deficient cardiomyocytes to a similar extent as Ifih1 depletion, identifying IRF7 as the main mediator of autoinflammatory responses caused by the absence of ADAR1 in cardiomyocytes. CONCLUSIONS: Enzymatically active ADAR1 prevents IRF7-mediated autoinflammatory reactions in the heart triggered by endogenous nonedited RNAs. In addition to RNA editing, ADAR1 also serves editing-independent roles in the heart required for long-term cardiac function and survival.


Asunto(s)
Adenosina Desaminasa , Insuficiencia Cardíaca , Adenosina/metabolismo , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Animales , Inosina/metabolismo , Factor 7 Regulador del Interferón/metabolismo , Helicasa Inducida por Interferón IFIH1/genética , Helicasa Inducida por Interferón IFIH1/metabolismo , Interferones/metabolismo , Ratones , Ratones Mutantes , FN-kappa B/metabolismo , ARN
4.
Histochem Cell Biol ; 155(2): 271-277, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32685990

RESUMEN

Optical clearing combined with deep imaging of large biological specimen allows organ-wide visualization of cells in three dimensions (3D) to explore regenerative processes in a spatial context. Here, we investigate the dynamics of airway regeneration following toxin-mediated epithelial injury in cleared whole lung preparations by light sheet microscopy. We use a recently developed knock-in mouse strain labeling bronchiolar Club cells (Scgb1a1-mCherry) to define an optimal clearing procedure that efficiently preserves genetically encoded fluorophores. Dehydration in pH-adjusted tert-butanol followed by clearing in ethyl cinnamate maintained maximum mCherry fluorescence while preventing unfavorable background fluorescence. We apply this technique to depict the course of bronchiolar epithelial renewal from an acute injury phase to early and late recovery stages. 3D reconstructions of whole lungs demonstrate near-complete loss of secretory Club cells throughout the entire respiratory tract 3 days post naphthalene (dpn). Multiple foci of regenerating Club cells emerge at 7 dpn, predominantly at airway bifurcations and in distal terminal bronchioles-anatomical regions assumed to harbor distinct stem/progenitor cells subsets. At 21 dpn, clusters of newly formed Club cells have largely expanded, although the bronchiolar epithelial lining continues to regenerate. This study identifies regional stem cell niches as starting points for epithelial recovery, underscores the enormous regenerative capacity of the respiratory epithelium and demonstrates the power of whole lung 3D imaging for evaluating the extent of pulmonary damage and subsequent repair processes.


Asunto(s)
Luz , Lesión Pulmonar/patología , Animales , Ratones , Ratones Noqueados , Microscopía Fluorescente
5.
Molecules ; 25(23)2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33260959

RESUMEN

SUMOylation is a reversible posttranslational modification pathway catalyzing the conjugation of small ubiquitin-related modifier (SUMO) proteins to lysine residues of distinct target proteins. SUMOylation modifies a wide variety of cellular regulators thereby affecting a multitude of key processes in a highly dynamic manner. The SUMOylation pathway displays a hallmark in cellular stress-adaption, such as heat or redox stress. It has been proposed that enhanced cellular SUMOylation protects the brain during ischemia, however, little is known about the specific regulation of the SUMO system and the potential target proteins during cardiac ischemia and reperfusion injury (I/R). By applying left anterior descending (LAD) coronary artery ligation and reperfusion in mice, we detect dynamic changes in the overall cellular SUMOylation pattern correlating with decreased SUMO deconjugase activity during I/R injury. Further, unbiased system-wide quantitative SUMO-proteomics identified a sub-group of SUMO targets exhibiting significant alterations in response to cardiac I/R. Notably, transcription factors that control hypoxia- and angiogenesis-related gene expression programs, exhibit altered SUMOylation during ischemic stress adaptation. Moreover, several components of the ubiquitin proteasome system undergo dynamic changes in SUMO conjugation during cardiac I/R suggesting an involvement of SUMO signaling in protein quality control and proteostasis in the ischemic heart. Altogether, our study reveals regulated candidate SUMO target proteins in the mouse heart, which might be important in coping with hypoxic/proteotoxic stress during cardiac I/R injury.


Asunto(s)
Isquemia Miocárdica/metabolismo , Proteoma/análisis , Daño por Reperfusión/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Isquemia Miocárdica/patología , Proteoma/metabolismo , Proteómica , Daño por Reperfusión/patología , Transducción de Señal
6.
J Cell Mol Med ; 24(6): 3534-3548, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32040259

RESUMEN

Cardiac ischaemia-reperfusion (I/R) injury has been attributed to stress signals arising from an impaired mitochondrial electron transport chain (ETC), which include redox imbalance, metabolic stalling and excessive production of reactive oxygen species (ROS). The alternative oxidase (AOX) is a respiratory enzyme, absent in mammals, that accepts electrons from a reduced quinone pool to reduce oxygen to water, thereby restoring electron flux when impaired and, in the process, blunting ROS production. Hence, AOX represents a natural rescue mechanism from respiratory stress. This study aimed to determine how respiratory restoration through xenotopically expressed AOX affects the re-perfused post-ischaemic mouse heart. As expected, AOX supports ETC function and attenuates the ROS load in post-anoxic heart mitochondria. However, post-ischaemic cardiac remodelling over 3 and 9 weeks was not improved. AOX blunted transcript levels of factors known to be up-regulated upon I/R such as the atrial natriuretic peptide (Anp) whilst expression of pro-fibrotic and pro-apoptotic transcripts were increased. Ex vivo analysis revealed contractile failure at nine but not 3 weeks after ischaemia whilst label-free quantitative proteomics identified an increase in proteins promoting adverse extracellular matrix remodelling. Together, this indicates an essential role for ETC-derived signals during cardiac adaptive remodelling and identified ROS as a possible effector.


Asunto(s)
Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/fisiopatología , Transducción de Señal , Remodelación Ventricular , Animales , Biocatálisis , Transporte de Electrón , Matriz Extracelular/metabolismo , Masculino , Ratones , Mitocondrias Cardíacas/metabolismo , Proteínas Mitocondriales/metabolismo , Contracción Miocárdica , Isquemia Miocárdica/complicaciones , Isquemia Miocárdica/genética , Daño por Reperfusión Miocárdica/complicaciones , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología , Miocardio/patología , Miocardio/ultraestructura , Oxidorreductasas/metabolismo , Proteínas de Plantas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
7.
BMC Genomics ; 10: 100, 2009 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-19267916

RESUMEN

BACKGROUND: High throughput techniques have generated a huge set of biological data, which are deposited in various databases. Efficient exploitation of these databases is often hampered by a lack of appropriate tools, which allow easy and reliable identification of genes that miss functional characterization but are correlated with specific biological conditions (e.g. organotypic expression). RESULTS: We have developed a simple algorithm (DGSA = Database-dependent Gene Selection and Analysis) to identify genes with unknown functions involved in organ development concentrating on the heart. Using our approach, we identified a large number of yet uncharacterized genes, which are expressed during heart development. An initial functional characterization of genes by loss-of-function analysis employing morpholino injections into zebrafish embryos disclosed severe developmental defects indicating a decisive function of selected genes for developmental processes. CONCLUSION: We conclude that DGSA is a versatile tool for database mining allowing efficient selection of uncharacterized genes for functional analysis.


Asunto(s)
Algoritmos , Sistemas de Administración de Bases de Datos , Perfilación de la Expresión Génica/métodos , Miocardio/metabolismo , Animales , Biología Computacional , Bases de Datos Genéticas , Regulación del Desarrollo de la Expresión Génica , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Análisis de Secuencia de ARN , Pez Cebra/embriología , Pez Cebra/genética
8.
J Cell Physiol ; 212(1): 236-43, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17311300

RESUMEN

Vascular endothelial growth factor (VEGF), a potent mediator of endothelial proliferation and migration, has an important role also in brain edema formation during hypoxia and ischemia. VEGF binds to the tyrosine kinase receptors Flt-1 and Flk-1. Yet, their relative importance for hypoxia-induced hyperpermeability is not well understood. We used an in vitro blood-brain barrier (BBB) model consisting of porcine brain microvascular endothelial cells (BMEC) to determine the role of Flt-1 in VEGF-induced endothelial cell (EC) barrier dysfunction. Soluble Flt-1 abolished hypoxia/VEGF-induced hyperpermeability. Furthermore, selective antisense oligonucleotides to Flt-1, but not to Flk-1, inhibited hypoxia-induced permeability changes. Consistent with these data, addition of the receptor-specific homolog placenta-derived growth factor, which binds Flt-1 but not Flk-1, increased endothelial permeability to the same extent as VEGF, whereas adding VEGF-E, a viral VEGF molecule from the orf virus family activating Flk-1 and neuropilin-1, but not Flt-1, did not show any effect. Using the carcinoma submandibular gland cell line (CSG), only expressing Flt-1, it was demonstrated that activation of Flt-1 is sufficient to induce hyperpermeability by hypoxia and VEGF. Hyperpermeability, induced by hypoxia/VEGF, depends on activation of phosphatidylinositol 3-kinase/Akt (PI3-K/Akt), nitric oxide synthase (NOS) and protein kinase G (PKG). The activation of the PI3-K/Akt pathway by hypoxia was confirmed using an in vivo mice hypoxia model. These results demonstrate that hypoxia/VEGF-induced hyperpermeability can be mediated by activation of Flt-1 independently on the presence of Flk-1 and indicate a central role for activation of the PI3-K/Akt pathway, followed by induction of NOS and PKG activity.


Asunto(s)
Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Barrera Hematoencefálica , Encéfalo/metabolismo , Línea Celular Tumoral , Perros , Células Endoteliales/metabolismo , Regulación de la Expresión Génica , Masculino , Ratones , Oxígeno/metabolismo , Permeabilidad , Porcinos
9.
Eur J Cell Biol ; 84(7): 687-97, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16106912

RESUMEN

In vivo, pathological conditions such as ischemia and ischemia/reperfusion are known to damage the blood-brain barrier (BBB) leading to the development of vasogenic brain edema. Using an in vitro model of the BBB, consisting of brain-derived microvascular endothelial cells (BMEC), it was demonstrated that hypoxia-induced paracellular permeability was strongly aggravated by reoxygenation (H/R), which was prevented by catalase suggesting that H2O2 is the main mediator of the reoxygenation effect. Therefore, mechanisms leading to H2O2-induced hyperpermeability were investigated. N-acetylcysteine and suramin and furthermore usage of a G protein antagonist inhibited H202 effects suggesting that activation of cell surface receptors coupled to G proteins may mediate signal initiation by H2O2. Further, H2O2 activated phospholipase C (PLC) and increased the intracellular Ca2+ release because U73122, TMB-8, and the calmodulin antagonist W7 inhibited H2O2-induced hyperpermeability. H2O2 did not activate protein kinase C (PKC), nitric-oxide synthase (NOS), and phosphatidyl-inositol-3 kinase (PI3-K/Akt). Inhibition of the extracellular signal-regulated kinase (ERK1/ERK2 or p44/42 MAPK), but not of the p38 and of the c-jun NH2-terminal kinase (JNK), inhibited hyperpermeability by H2O2 and H/R completely. Corresponding to H2O2- and H/R-induced permeability changes the phosphorylation of the p44/42 MAP kinase was inhibited by the specific MAP kinase inhibitor PD98059 and by TMB-8 and W7. Paracellular permeability changes by H2O2 correlated to changes of the localization of the tight junction (TJ) proteins occludin, zonula occludens 1 (ZO-1), and zonula occludens 2 (ZO-2) which were prevented by blocking the p44/p42 MAP kinase activation. Results suggest that H2O2 is the main inducer of H/R-induced permeability changes. The hyperpermeability is caused by activation of PLC via receptor activation leading to the intracellular release of Ca2+ followed by activation of the p44/42 MAP kinase and paracellular permeability changes mediated by changes of the localization of TJ proteins.


Asunto(s)
Encéfalo/citología , Permeabilidad de la Membrana Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Peróxido de Hidrógeno/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Animales , Antioxidantes/farmacología , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Catalasa/metabolismo , Catalasa/farmacología , Células Endoteliales/citología , Células Endoteliales/enzimología , Flavonoides/farmacología , Peróxido de Hidrógeno/metabolismo , Hipoxia Encefálica , Proteínas de la Membrana/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Fosfoproteínas/metabolismo , Receptores de Superficie Celular/antagonistas & inhibidores , Receptores de Superficie Celular/metabolismo , Suramina/farmacología , Uniones Estrechas/metabolismo , Proteína de la Zonula Occludens-1 , Proteína de la Zonula Occludens-2
10.
J Cell Physiol ; 198(3): 359-69, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14755541

RESUMEN

In vivo, ischemia is known to damage the blood-brain barrier (BBB) leading to the development of vasogenic brain edema. Hypoxia-induced vascular endothelial growth factor (VEGF) has been shown to be a key regulator of these permeability changes. However, the signaling pathways that underlie VEGF-induced hyperpermeability are incompletely understood. In this study, we demonstrate that hypoxia- and VEGF-induced permeability changes depend on activation of phospholipase Cgamma (PLCgamma), phosphatidylinositol 3-kinase/Akt (PI3-K/Akt), and protein kinase G (PKG). Inhibition of mitogen-activated protein kinases (MAPK) and of the protein kinase C (PKC) did not affect permeability at all. Paralleling hypoxia- and VEGF-induced permeability changes, localization of the tight junction proteins occludin, zonula occludens-1 (ZO-1), and ZO-2 along the cell membrane changed from a continuous to a more discontinuous expression pattern during hypoxia. In particular, localization of ZO-1 and ZO-2 expression moved from the cell membrane to the cytoplasm and nucleus whereas occludin expression remained at the cell membrane. Inhibition of PLCgamma, PI3-kinase, and PKG abolished these hypoxia-induced changes. These findings demonstrate that hypoxia and VEGF induce permeability through rearrangement of endothelial junctional proteins which involves activation of the PLCgamma and PI3-K/AKT pathway leading to the activation of PKG.


Asunto(s)
Encéfalo/irrigación sanguínea , Permeabilidad Capilar/fisiología , Células Endoteliales/metabolismo , Uniones Estrechas/ultraestructura , Animales , Northern Blotting , Western Blotting , Encéfalo/fisiopatología , Permeabilidad Capilar/efectos de los fármacos , Hipoxia de la Célula/fisiología , Células Cultivadas , Proteínas Quinasas Dependientes de GMP Cíclico/efectos de los fármacos , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/ultraestructura , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Inhibidores Enzimáticos/farmacología , Técnica del Anticuerpo Fluorescente , Proteínas de la Membrana/metabolismo , Ocludina , Fosfatidilinositol 3-Quinasas/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfolipasa C gamma , Fosfoproteínas/metabolismo , Transporte de Proteínas/fisiología , Porcinos , Fosfolipasas de Tipo C/efectos de los fármacos , Fosfolipasas de Tipo C/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/farmacología , Proteína de la Zonula Occludens-1 , Proteína de la Zonula Occludens-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...