Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros












Intervalo de año de publicación
1.
Vaccines (Basel) ; 12(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38932344

RESUMEN

Bovine alphaherpesvirus 1 (BoAHV-1) infection affects the production and reproductive performance of dairy and beef livestock, resulting in considerable economic losses. In addition to biosecurity measures, vaccination programs are effective strategies for controlling and preventing BoAHV-1 infection and transmission. We evaluated the serological immune response against BoAHV-1 induced by eight different formulations of commercial vaccines: three modified live vaccines and five killed vaccines containing BoAHV type 1 or types 1 and 5. In the first experiment, 50 BoAHV-1-seronegative guinea pigs were assigned to eight groups; each individual in the treatment groups received two doses (one-fifth of the bovine dose). The second experiment was conducted using 29 crossbred Holstein × Gir heifers in four groups of six to nine animals each. The serological immune response against BoAHV-1 was measured using virus neutralization and enzyme-linked immunosorbent assays to measure the total IgG against BoAHV. We evaluated the effects of the vaccine, time, and interaction of the vaccine and time on neutralizing antibodies against BoAHV-1. Killed vaccines produced low levels of antibodies against BoAHV-1, whereas modified live vaccines produced high levels of antibodies capable of providing neutralizing titers in the vaccinated animals, with the thermosensitive modified live vaccine showing the highest levels of antibodies.

2.
Transl Anim Sci ; 8: txae046, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38665216

RESUMEN

Bovine respiratory disease (BRD) is a serious health and economic problem in the beef industry, which is often associated with transportation and caused by different pathogens. In this study, we evaluated the effect of a novel subunit targeted vaccine against bovine viral diarrhea virus (BVDV) in feedlot cattle, a major viral agent of BRD. The core of this novel vaccine is the fusion of the BVDV structural glycoprotein, E2, to a single-chain antibody, APCH, together termed, APCH-E2. The APCH antibody targets the E2 antigen to the major histocompatibility type II molecule (MHC-II) present in antigen-presenting cells. To evaluate the vaccine, 2,992 animals were randomly allocated into two groups, control group (N = 1,491) and treatment group (N = 1,501). Animals of both groups received the routine sanitary plan: two doses of clostridial, respiratory, and rabies vaccines. Animals within the treatment group also received two doses of a targeted subunit vaccine against BVDV. Serum samples were taken on the day of the first inoculation (T0) and 90 d later (T90). Viral circulation was monitored using an anti-P80 ELISA (virus-specific) and immune response was evaluated by anti-E2 ELISA (detects virus and vaccine immune responses). Only animals treated for respiratory disease were considered positive cases of BRD. Results demonstrate that the control group had significantly more animals treated for BRD cases compared to the treatment group (5.9% vs. 3.7%, P = 0.02). The control group had a greater number of animals positive for anti-P80 antibodies and significantly fewer animals positive for anti-E2 antibodies compared to the treatment group (69% vs. 61% and 71% vs. 99%, respectively, P = 0.003), consistent with natural viral circulation within this group. The treatment group, conversely, had fewer animals positive for anti-P80 antibodies and a greater number of animals positive for anti-E2 antibodies, consistent with a robust vaccine-induced antibody response and a reduction of the BVDV circulation within this group. The data indicate the new subunit targeted vaccine induced greater anti-E2 antibodies and reduced the amount of BVD virus circulation within the treatment group leading to a fewer number of animals needing to be treated for BRD.

3.
Viruses ; 16(2)2024 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-38399961

RESUMEN

Since the beginning of the COVID-19 pandemic, there has been a significant need to develop antivirals and vaccines to combat the disease. In this work, we developed llama-derived nanobodies (Nbs) directed against the receptor binding domain (RBD) and other domains of the Spike (S) protein of SARS-CoV-2. Most of the Nbs with neutralizing properties were directed to RBD and were able to block S-2P/ACE2 interaction. Three neutralizing Nbs recognized the N-terminal domain (NTD) of the S-2P protein. Intranasal administration of Nbs induced protection ranging from 40% to 80% after challenge with the WA1/2020 strain in k18-hACE2 transgenic mice. Interestingly, protection was associated with a significant reduction in virus replication in nasal turbinates and a reduction in virus load in the brain. Employing pseudovirus neutralization assays, we identified Nbs with neutralizing capacity against the Alpha, Beta, Delta, and Omicron variants, including a Nb capable of neutralizing all variants tested. Furthermore, cocktails of different Nbs performed better than individual Nbs at neutralizing two Omicron variants (B.1.529 and BA.2). Altogether, the data suggest the potential of SARS-CoV-2 specific Nbs for intranasal treatment of COVID-19 encephalitis.


Asunto(s)
COVID-19 , Camélidos del Nuevo Mundo , Anticuerpos de Dominio Único , Animales , Ratones , Humanos , Enzima Convertidora de Angiotensina 2/genética , Anticuerpos de Dominio Único/genética , SARS-CoV-2/genética , Pandemias , Encéfalo , Ratones Transgénicos , Glicoproteína de la Espiga del Coronavirus/genética , Anticuerpos Neutralizantes , Anticuerpos Antivirales
4.
Front Immunol ; 14: 1271209, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38022542

RESUMEN

In this study, we evaluated the efficacy of a heterologous three-dose vaccination schedule against the Omicron BA.1 SARS-CoV-2 variant infection using a mouse intranasal challenge model. The vaccination schedules tested in this study consisted of a primary series of 2 doses covered by two commercial vaccines: an mRNA-based vaccine (mRNA1273) or a non-replicative vector-based vaccine (AZD1222/ChAdOx1, hereafter referred to as AZD1222). These were followed by a heterologous booster dose using one of the two vaccine candidates previously designed by us: one containing the glycosylated and trimeric spike protein (S) from the ancestral virus (SW-Vac 2µg), and the other from the Delta variant of SARS-CoV-2 (SD-Vac 2µg), both formulated with Alhydrogel as an adjuvant. For comparison purposes, homologous three-dose schedules of the commercial vaccines were used. The mRNA-based vaccine, whether used in heterologous or homologous schedules, demonstrated the best performance, significantly increasing both humoral and cellular immune responses. In contrast, for the schedules that included the AZD1222 vaccine as the primary series, the heterologous schemes showed superior immunological outcomes compared to the homologous 3-dose AZD1222 regimen. For these schemes no differences were observed in the immune response obtained when SW-Vac 2µg or SD-Vac 2µg were used as a booster dose. Neutralizing antibody levels against Omicron BA.1 were low, especially for the schedules using AZD1222. However, a robust Th1 profile, known to be crucial for protection, was observed, particularly for the heterologous schemes that included AZD1222. All the tested schedules were capable of inducing populations of CD4 T effector, memory, and follicular helper T lymphocytes. It is important to highlight that all the evaluated schedules demonstrated a satisfactory safety profile and induced multiple immunological markers of protection. Although the levels of these markers were different among the tested schedules, they appear to complement each other in conferring protection against intranasal challenge with Omicron BA.1 in K18-hACE2 mice. In summary, the results highlight the potential of using the S protein (either ancestral Wuhan or Delta variant)-based vaccine formulation as heterologous boosters in the management of COVID-19, particularly for certain commercial vaccines currently in use.


Asunto(s)
Vacuna nCoV-2019 mRNA-1273 , ChAdOx1 nCoV-19 , Humanos , Animales , Adyuvantes Inmunológicos , Modelos Animales de Enfermedad , ARN Mensajero
5.
bioRxiv ; 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36993215

RESUMEN

In this work, we developed llama-derived nanobodies (Nbs) directed to the receptor binding domain (RBD) and other domains of the Spike (S) protein of SARS-CoV-2. Nanobodies were selected after the biopanning of two VHH-libraries, one of which was generated after the immunization of a llama (lama glama) with the bovine coronavirus (BCoV) Mebus, and another with the full-length pre-fused locked S protein (S-2P) and the RBD from the SARS-CoV-2 Wuhan strain (WT). Most of the neutralizing Nbs selected with either RBD or S-2P from SARS-CoV-2 were directed to RBD and were able to block S-2P/ACE2 interaction. Three Nbs recognized the N-terminal domain (NTD) of the S-2P protein as measured by competition with biliverdin, while some non-neutralizing Nbs recognize epitopes in the S2 domain. One Nb from the BCoV immune library was directed to RBD but was non-neutralizing. Intranasal administration of Nbs induced protection ranging from 40% to 80% against COVID-19 death in k18-hACE2 mice challenged with the WT strain. Interestingly, protection was not only associated with a significant reduction of virus replication in nasal turbinates and lungs, but also with a reduction of virus load in the brain. Employing pseudovirus neutralization assays, we were able to identify Nbs with neutralizing capacity against the Alpha, Beta, Delta and Omicron variants. Furthermore, cocktails of different Nbs performed better than individual Nbs to neutralize two Omicron variants (B.1.529 and BA.2). Altogether, the data suggest these Nbs can potentially be used as a cocktail for intranasal treatment to prevent or treat COVID-19 encephalitis, or modified for prophylactic administration to fight this disease.

6.
Viruses ; 15(3)2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36992417

RESUMEN

Bovine Coronavirus (BCoV) is a major pathogen associated with neonatal calf diarrhea. Standard practice dictates that to prevent BCoV diarrhea, dams should be immunized in the last stage of pregnancy to increase BCoV-specific antibody (Ab) titers in serum and colostrum. For the prevention to be effective, calves need to suck maternal colostrum within the first six to twelve hours of life before gut closure to ensure a good level of passive immunity. The high rate of maternal Ab transfer failure resulting from this process posed the need to develop alternative local passive immunity strategies to strengthen the prevention and treatment of BCoV diarrhea. Immunoglobulin Y technology represents a promising tool to address this gap. In this study, 200 laying hens were immunized with BCoV to obtain spray-dried egg powder enriched in specific IgY Abs to BCoV on a large production scale. To ensure batch-to-batch product consistency, a potency assay was statistically validated. With a sample size of 241, the BCoV-specific IgY ELISA showed a sensitivity and specificity of 97.7% and 98.2%, respectively. ELISA IgY Abs to BCoV correlated with virus-neutralizing Ab titers (Pearson correlation, R2 = 0.92, p < 0.001). Most importantly, a pilot efficacy study in newborn calves showed a significant delay and shorter duration of BCoV-associated diarrhea and shedding in IgY-treated colostrum-deprived calves. Calves were treated with milk supplemented with egg powder (final IgY Ab titer to BCoV ELISA = 512; VN = 32) for 14 days as a passive treatment before a challenge with BCoV and were compared to calves fed milk with no supplementation. This is the first study with proof of efficacy of a product based on egg powder manufactured at a scale that successfully prevents BCoV-associated neonatal calf diarrhea.


Asunto(s)
Enfermedades de los Bovinos , Coronavirus Bovino , Embarazo , Animales , Bovinos , Femenino , Pollos , Polvos , Animales Recién Nacidos , Anticuerpos Antivirales/análisis , Diarrea/prevención & control , Diarrea/veterinaria , Enfermedades de los Bovinos/prevención & control
7.
Front Immunol ; 13: 1020159, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36248791

RESUMEN

The emergency of new SARS-CoV-2 variants that feature increased immune escape marks an urgent demand for better vaccines that will provide broader immunogenicity. Here, we evaluated the immunogenic capacity of vaccine candidates based on the recombinant trimeric spike protein (S) of different SARS-CoV-2 variants of concern (VOC), including the ancestral Wuhan, Beta and Delta viruses. In particular, we assessed formulations containing either single or combined S protein variants. Our study shows that the formulation containing the single S protein from the ancestral Wuhan virus at a concentration of 2µg (SW2-Vac 2µg) displayed in the mouse model the highest IgG antibody levels against all the three (Wuhan, Beta, and Delta) SARS-CoV-2 S protein variants tested. In addition, this formulation induced significantly higher neutralizing antibody titers against the three viral variants when compared with authorized Gam-COVID-Vac-rAd26/rAd5 (Sputnik V) or ChAdOx1 (AstraZeneca) vaccines. SW2-Vac 2µg was also able to induce IFN-gamma and IL-17, memory CD4 populations and follicular T cells. Used as a booster dose for schedules performed with different authorized vaccines, SW2-Vac 2µg vaccine candidate also induced higher levels of total IgG and IgG isotypes against S protein from different SARS-CoV-2 variants in comparison with those observed with homologous 3-dose schedule of Sputnik V or AstraZeneca. Moreover, SW2-Vac 2µg booster induced broadly strong neutralizing antibody levels against the three tested SARS-CoV-2 variants. SW2-Vac 2µg booster also induced CD4+ central memory, CD4+ effector and CD8+ populations. Overall, the results demonstrate that SW2-Vac 2 µg is a promising formulation for the development of a next generation COVID-19 vaccine.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Humanos , Inmunoglobulina G , Interleucina-17 , Ratones , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética
8.
Sci Rep ; 11(1): 20013, 2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34625580

RESUMEN

Mal de Río Cuarto virus (MRCV) is a member of the genus Fijivirus of the family Reoviridae that causes a devastating disease in maize and is persistently and propagatively transmitted by planthopper vectors. Virus replication and assembly occur within viroplasms formed by viral and host proteins. This work describes the isolation and characterization of llama-derived Nanobodies (Nbs) recognizing the major viral viroplasm component, P9-1. Specific Nbs were selected against recombinant P9-1, with affinities in the nanomolar range as measured by surface plasmon resonance. Three selected Nbs were fused to alkaline phosphatase and eGFP to develop a sandwich ELISA test which showed a high diagnostic sensitivity (99.12%, 95% CI 95.21-99.98) and specificity (100%, 95% CI 96.31-100) and a detection limit of 0.236 ng/ml. Interestingly, these Nanobodies recognized different P9-1 conformations and were successfully employed to detect P9-1 in pull-down assays of infected maize extracts. Finally, we demonstrated that fusions of the Nbs to eGFP and RFP allowed the immunodetection of virus present in phloem cells of leaf thin sections. The Nbs developed in this work will aid the study of MRCV epidemiology, assist maize breeding programs, and be valuable tools to boost fundamental research on viroplasm structure and maturation.


Asunto(s)
Pruebas Inmunológicas/métodos , Reoviridae , Proteínas Virales , Zea mays/virología , Animales , Camélidos del Nuevo Mundo/inmunología , Ensayo de Inmunoadsorción Enzimática/métodos , Escherichia coli/genética , Enfermedades de las Plantas/virología , Plantas , Proteínas Recombinantes/análisis , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Reoviridae/inmunología , Reoviridae/aislamiento & purificación , Reoviridae/metabolismo , Proteínas Virales/análisis , Proteínas Virales/biosíntesis , Proteínas Virales/genética
9.
Biotechnol Bioeng ; 118(9): 3348-3358, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33624832

RESUMEN

Single-domain antibodies (sdAbs) offer the affinity and therapeutic value of conventional antibodies, with increased stability and solubility. Unlike conventional antibodies, however, sdAbs do not benefit from a platform manufacturing process. While successful production of a variety of sdAbs has been shown in numerous hosts, purification methods are often molecule specific or require affinity tags, which generally cannot be used in clinical manufacturing due to regulatory concerns. Here, we have developed a broadly applicable production and purification process for sdAbs in Komagataella phaffii (Pichia pastoris) and demonstrated the production of eight different sdAbs at a quality appropriate for nonclinical studies. We developed a two-step, integrated purification process without the use of affinity resins and showed that modification of a single process parameter, pH of the bridging buffer, was required for the successful purification of a variety of sdAbs. Further, we determined that this parameter can be predicted based only on the biophysical characteristics of the target molecule. Using these methods, we produced nonclinical quality sdAbs as few as 5 weeks after identifying the product sequence. Nonclinical studies of three different sdAbs showed that molecules produced using our platform process conferred protection against viral shedding of rotavirus or H1N1 influenza and were equivalent to similar molecules produced in Escherichia coli and purified using affinity tags.


Asunto(s)
Anticuerpos Antivirales , Subtipo H1N1 del Virus de la Influenza A/inmunología , Rotavirus/inmunología , Saccharomycetales/crecimiento & desarrollo , Anticuerpos de Cadena Única , Animales , Anticuerpos Antivirales/biosíntesis , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/aislamiento & purificación , Ratones , Ratones Endogámicos BALB C , Anticuerpos de Cadena Única/biosíntesis , Anticuerpos de Cadena Única/inmunología , Anticuerpos de Cadena Única/aislamiento & purificación
10.
Transbound Emerg Dis ; 68(6): 3474-3481, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33300298

RESUMEN

Bovine viral diarrhoea virus (BVDV) is a major cause of economic loss in the cattle industry, worldwide. Infection results in reduced productive performance, growth retardation, reduced milk production and increased susceptibility to other diseases leading to early culling of animals. There are two primary methods used to control the spread of BVDV: the elimination of persistently infected (PI) animals and vaccination. Currently, modified live or inactivated vaccines are used in BVDV vaccination programmes, but there are safety risks or insufficient protection, respectively, with these vaccines. Here, we report the development and efficacy of the first targeted subunit vaccine against BVDV. The core of the vaccine is the fusion of the BVDV structural protein, E2, to a single-chain antibody, APCH, together termed, APCH-E2. The APCH antibody targets the E2 antigen to the major histocompatibility type II molecule (MHC-II) present on antigen-presenting cells. Industrial production of the vaccine is carried out using the baculovirus expression vector system (BEVS) using single-use manufacturing technologies. This new subunit vaccine induces strong BVDV-specific neutralizing antibodies in guinea pigs and cattle. Importantly, in cattle with low levels of natural BVDV-specific neutralizing antibodies, the vaccine induced strong neutralizing antibody levels to above the protective threshold, as determined by a competition ELISA. The APCH-E2 vaccine induced a rapid and sustained neutralizing antibody response compared with a conventional vaccine in cattle.


Asunto(s)
Diarrea Mucosa Bovina Viral , Enfermedades de los Bovinos , Virus de la Diarrea Viral Bovina , Vacunas Virales , Animales , Anticuerpos Antivirales , Diarrea Mucosa Bovina Viral/prevención & control , Bovinos , Cobayas , Vacunas de Subunidad
11.
Front Vet Sci ; 7: 594, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33195496

RESUMEN

Foot-and-mouth disease (FMD) is a highly contagious disease of cloven-hoofed animals that causes severe economic losses in the livestock industry. Currently available vaccines are based on the inactivated FMD virus (FMDV). Although inactivated vaccines have been effective in controlling the disease, they have some disadvantages. Because of these disadvantages, investigations are being made to produce vaccines in low containment facilities. The use of recombinant empty capsids (also referred as Virus Like Particles, VLPs) has been reported to be a promising candidate as a subunit vaccine because it avoids the use of virus in the vaccine production and conserves the conformational epitopes of the virus. Mignaqui and collaborators have produced recombinant FMDV empty capsids from serotype A/ARG/2001 using a scalable technology in mammalian cells that elicited a protective immunity against viral challenge in a mouse model. However, further evaluation of the immune response elicited by these VLPs in cattle is required. In the present work we compare the effect that VLPs or inactivated FMDV has on bovine dendritic cells and the humoral response elicited in cattle after a single vaccination.

12.
Front Vet Sci ; 7: 601, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33173790

RESUMEN

Inactivated Foot-and-Mouth Disease (FMD) vaccine has proven to be effective in the control of the disease. However, its production has some disadvantages, including the costly biosafety facilities required for the production of huge amounts of growing live virus, the need of an exhaustive purification process to eliminate non-structural proteins of the virus in the final formulations in order to differentiate infected from vaccinated animals and variable local regulatory restrictions to produce and commercialize the vaccine. Thus, a novel vaccine against FMD that overcome these restrictions is desirable. Although many developments have been made in this regard, most of them failed in terms of efficacy or when considering their transferability to the industry. We have previously reported the use of transient gene expression in mammalian cells to produce FMD virus-like particles (VLPs) as a novel vaccine for FMD and demonstrated the immunogenicity of the recombinant structures in animal models. Here, we report the optimization of the production system by assaying different DNA:polyethylenimine concentrations, cell densities, and direct and indirect protocols of transfection. Also, we evaluated the reproducibility and scalability of the technology to produce high yields of recombinant VLPs in a cost-effective and scalable system compatible with industrial tech-transfer of an effective and safe vaccine.

13.
BMC Vet Res ; 16(1): 264, 2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32727468

RESUMEN

BACKGROUND: Neonatal diarrhea remains one of the main causes of morbi-mortality in dairy calves under artificial rearing. It is often caused by infectious agents of viral, bacterial, or parasitic origin. Cows vaccination and colostrum intake by calves during the first 6 h of life are critical strategies to prevent severe diarrhea but these are still insufficient. Here we report the field evaluation of a product based on IgY antibodies against group A rotavirus (RVA), coronavirus (CoV), enterotoxigenic Escherichia coli, and Salmonella sp. This product, named IgY DNT, has been designed as a complementary passive immunization strategy to prevent neonatal calf diarrhea. The quality of the product depends on the titers of specific IgY antibodies to each antigen evaluated by ELISA. In the case of the viral antigens, ELISA antibody (Ab) titers are correlated with protection against infection in calves experimentally challenged with RVA and CoV (Bok M, et al., Passive immunity to control bovine coronavirus diarrhea in a dairy herd in Argentina, 2017), (Vega C, et al., Vet Immunol Immunopathol, 142:156-69, 2011), (Vega C, et al., Res Vet Sci, 103:1-10, 2015). To evaluate the efficiency in dairy farms, thirty newborn Holstein calves were randomly assigned to IgY DNT or control groups and treatment initiated after colostrum intake and gut closure. Calves in the IgY DNT group received 20 g of the oral passive treatment in 2 L of milk twice a day during the first 2 weeks of life. Animals were followed until 3 weeks of age and diarrhea due to natural exposure to infectious agents was recorded during all the experimental time. RESULTS: Results demonstrate that the oral administration of IgY DNT during the first 2 weeks of life to newborn calves caused a delay in diarrhea onset and significantly reduced its severity and duration compared with untreated calves. Animals treated with IgY DNT showed a trend towards a delay in RVA infection with significantly shorter duration and virus shedding compared to control calves. CONCLUSIONS: This indicates that IgY DNT is an effective product to complement current preventive strategies against neonatal calf diarrhea in dairy farms. Furthermore, to our knowledge, this is the only biological product available for the prevention of virus-associated neonatal calf diarrhea.


Asunto(s)
Anticuerpos Antibacterianos/uso terapéutico , Anticuerpos Antivirales/uso terapéutico , Enfermedades de los Bovinos/terapia , Diarrea/veterinaria , Inmunoglobulinas/uso terapéutico , Inmunoterapia , Animales , Animales Recién Nacidos , Anticuerpos Antiprotozoarios , Bovinos , Enfermedades de los Bovinos/microbiología , Enfermedades de los Bovinos/virología , Criptosporidiosis/prevención & control , Industria Lechera , Diarrea/microbiología , Diarrea/terapia , Diarrea/virología , Inmunización Pasiva/métodos , Inmunización Pasiva/veterinaria
14.
J Invertebr Pathol ; 166: 107222, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31356818

RESUMEN

Ostreid herpesvirus 1 (OsHV-1) is a DNA virus of the genus Ostreavirus (Malacoherpesviridae family, Herpesvirales order). Worldwide, OsHV-1 and its microvariants have been associated with increased mortality of Pacific oysters, Crassostrea gigas. Adult asymptomatic oysters also have shown a high prevalence of viral infection. As a consequence, surveillance is needed to better describe OsHV-1 diversity, pathogenicity, clinical signs, and geographical distribution. We examined Crassostrea gigas sampled in October 2017 from the inner zone of the Bahía Blanca Estuary, Argentina, and found that 8 of 30 specimens (26.7%) presented macroscopic lesions in mantle tissues. Histological analysis revealed abnormal presentation of mantle epithelial cells and connective tissues. Conventional and real-time PCR conducted on the oyster samples revealed 70% to be positive for presence of OsHV-1 DNA. The nucleotide sequence of the amplicon obtained from one sample using the primer pair IA1/IA2 (targeting ORF 42/43) was 99% identical to OsHV-1 reference as well as µVar strains B and A (KY271630, KY242785.1), sequenced from France and Ireland. This finding represents the first detection of OsHV-1 DNA in a wild population of C. gigas in Argentina in association with gross mantle lesions.


Asunto(s)
Crassostrea/virología , Virus ADN/genética , Mariscos/virología , Animales , Argentina , ADN Viral/análisis , Especies Introducidas , Filogenia
15.
Crit Rev Biotechnol ; 39(3): 306-320, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30654663

RESUMEN

Foot and mouth disease (FMD) is a highly contagious disease of cloven-hoofed animals, which causes severe economic losses in the livestock industry. Currently available vaccines are based on inactivated FMD virus (FMDV). Although inactivated virus vaccines have proved to be effective in FMD control, they have a number of disadvantages, including the need for high bio-containment production facilities and the lack of induction of immunological memory. Novel FMD vaccines based on the use of recombinant empty capsids have shown promising results. These recombinant empty capsids are attractive candidates because they avoid the use of virus in the production facilities but conserve its complete repertoire of conformational epitopes. However, many of these recombinant empty capsids require time-consuming procedures that are difficult to scale up. Achieving production of a novel and efficient FMD vaccine requires not only immunogenic antigens, but also industrially relevant processes. This review intends to summarize and compare the different strategies already published for the production of FMDV recombinant empty capsids, focusing on large-scale production.


Asunto(s)
Proteínas de la Cápside/genética , Fiebre Aftosa/tratamiento farmacológico , Proteínas Recombinantes/genética , Vacunas/genética , Animales , Cápside/química , Cápside/inmunología , Proteínas de la Cápside/inmunología , Proteínas de la Cápside/uso terapéutico , Fiebre Aftosa/inmunología , Fiebre Aftosa/virología , Virus de la Fiebre Aftosa/efectos de los fármacos , Virus de la Fiebre Aftosa/inmunología , Virus de la Fiebre Aftosa/patogenicidad , Humanos , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/uso terapéutico , Vacunas/uso terapéutico , Vacunas de Productos Inactivados/genética , Vacunas de Productos Inactivados/inmunología
16.
Biotechnol Rep (Amst) ; 20: e00283, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30319941

RESUMEN

Foot-and-mouth disease (FMD) remains one of the most feared viral diseases affecting cloven-hoofed animals, and results in severe economic losses. Currently available vaccines are based on inactivated FMD virus (FMDV). The use of recombinant FMDV-like particles (VLPs) as subunit vaccines has gained importance because of their immunogenic properties and safety. We evaluated the production of FMD VLPs, via Agrobacterium-mediated transient expression, and the immunogenicity of these structures in mice. Leaves were infiltrated with pEAQ-HT and pRIC 3.0 vectors encoding the capsid precursor P1-2A and the protease 3C. The recombinant protein yield was 3-4 mg/kg of fresh leaf tissue. Both groups of mice immunized with purified VLPs and mice immunized with the crude leaf extract elicited a specific humoral response with similar antibody titers. Thus, minimally processed plant material containing transiently expressed FMD VLPs could be a scalable and cost-effective technology for the production of a recombinant subunit vaccine against FMDV.

17.
Rev Argent Microbiol ; 50(1): 23-30, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28893529

RESUMEN

Bovine coronavirus (BCoV) is a viral enteric pathogen associated with calf diarrhea worldwide being, in Argentina, mostly detected in dairy husbandry systems. The aim of the present work was to study if maternal IgG1 antibodies (Abs) to BCoV acquired by colostrum intake modulate the development of BCoV infection in calves reared in a dairy farm in Argentina. Thirty Holstein calves were monitored during their first 60 days of age. Animals were classified into two groups depending on their initial BCoV IgG1 Ab titers. The "failure of passive transfer" (FPT) group had significantly lower IgG1 Abs to BCoV than the "acceptable passive transfer" (APT) group of calves (log10 1.98 vs. 3.38 respectively) (p<0.0001). These differences were also observed when the total protein levels in both groups were compared (p=0.0081). Moreover, 71% (5/7) of calves from the FPT group showed IgG1 seroconversion to BCoV compared to 29.4% (5/17) of animals from the APT group. Regarding viral circulation, BCoV was detected in 10% (3/30) of all calves and BCoV IgG1 Ab seroconversion was detected in 42% of the total animals showing that almost half of the calves were infected with BCoV. In conclusion, calves with high titers of specific BCoV IgG1 (≥1024) were mostly protected against viral infection, while animals with low titers of IgG1 (<1024) were mostly infected with BCoV. IgG1 Abs from colostrum origin are critical for prevention of BCoV infection.


Asunto(s)
Enfermedades de los Bovinos , Infecciones por Coronavirus , Coronavirus Bovino , Animales , Anticuerpos Antivirales , Argentina , Bovinos , Enfermedades de los Bovinos/virología , Infecciones por Coronavirus/veterinaria , Coronavirus Bovino/aislamiento & purificación , Diarrea , Ensayo de Inmunoadsorción Enzimática , Heces , Femenino , Embarazo
18.
Plant Biotechnol J ; 16(3): 727-736, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28850773

RESUMEN

Antivenoms developed from the plasma of hyperimmunized animals are the only effective treatment available against snakebite envenomation but shortage of supply contributes to the high morbidity and mortality toll of this tropical disease. We describe a synthetic biology approach to affordable and cost-effective antivenom production based on plant-made recombinant polyclonal antibodies (termed pluribodies). The strategy takes advantage of virus superinfection exclusion to induce the formation of somatic expression mosaics in agroinfiltrated plants, which enables the expression of complex antibody repertoires in a highly reproducible manner. Pluribodies developed using toxin-binding genetic information captured from peripheral blood lymphocytes of hyperimmunized camels recapitulated the overall binding activity of the immune response. Furthermore, an improved plant-made antivenom (plantivenom) was formulated using an in vitro selected pluribody against Bothrops asper snake venom toxins and has been shown to neutralize a wide range of toxin activities and provide protection against lethal venom doses in mice.


Asunto(s)
Planticuerpos/metabolismo , Venenos de Serpiente/antagonistas & inhibidores , Biología Sintética/métodos , Animales , Antivenenos/metabolismo , Bothrops/metabolismo
19.
Virus Res ; 244: 213-217, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29196195

RESUMEN

Foot-and-mouth disease (FMD) is a highly contagious disease of cloven-hoofed animals and is endemic in Africa, parts of South America and southern Asia. The causative agent, FMD virus (FMDV) is a member of the genus Aphthovirus, family Picornaviridae. Vaccines currently used against FMDV are chemically inactivated virus strains which are produced under high-level biocontainment facilities, thus raising their cost. The development of recombinant FMDV vaccines has focused predominantly on FMDV virus-like particle (VLP) subunit vaccines for which promising results have been achieved. These VLPs are attractive candidates because they avoid the use of live virus in production facilities, but conserve the complete repertoire of conformational epitopes of the virus. Recombinant FMDV VLPs are formed by the expression and assembly of the three structural proteins VP0, VP1 and VP3. This can be attained by co-expression of the three individual structural capsid proteins or by co-expression of the viral capsid precursor P1-2A together with the viral protease 3C. The latter proteolytically cleaves P1-2A into the respective structural proteins. These VLPS are produced in mammalian or insect cell culture systems, which are expensive and can be easily contaminated. Plants, such as Nicotiana benthamiana, potentially provide a more cost-effective and very highly scalable platform for recombinant protein and VLP production. In this study, P1-2A was transiently expressed in N. benthamiana alone, without the 3C protease. Surprisingly, there was efficient processing of the P1-2A polyprotein into its component structural proteins, and subsequent assembly into VLPs. The yield was ∼0.030µg per gram of fresh leaf material. Partially purified VLPs were preliminarily tested for immunogenicity in mice and shown to stimulate the production of FMDV-specific antibodies. This study, has important implications for simplifying the production and expression of potential vaccine candidates against FMDV in plants, in the absence of 3C expression.


Asunto(s)
Anticuerpos Antivirales/biosíntesis , Proteínas de la Cápside/inmunología , Virus de la Fiebre Aftosa/efectos de los fármacos , Fiebre Aftosa/prevención & control , Nicotiana/genética , Vacunas de Partículas Similares a Virus/biosíntesis , Vacunas Virales/biosíntesis , Proteasas Virales 3C , Animales , Antígenos Virales/genética , Antígenos Virales/inmunología , Proteínas de la Cápside/genética , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/inmunología , Epítopos/genética , Epítopos/inmunología , Femenino , Fiebre Aftosa/inmunología , Fiebre Aftosa/virología , Virus de la Fiebre Aftosa/inmunología , Inmunización , Inyecciones Subcutáneas , Ratones , Ratones Endogámicos BALB C , Precursores de Proteínas/genética , Precursores de Proteínas/inmunología , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Nicotiana/química , Nicotiana/metabolismo , Vacunas de Partículas Similares a Virus/administración & dosificación , Vacunas de Partículas Similares a Virus/genética , Proteínas Virales/genética , Proteínas Virales/inmunología , Proteínas Estructurales Virales/genética , Proteínas Estructurales Virales/inmunología , Vacunas Virales/administración & dosificación , Vacunas Virales/genética
20.
J Virol Methods ; 237: 127-131, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27616197

RESUMEN

African horse sickness (AHS) and equine infectious anemia (EIA) are both notifiable equid specific diseases that may present similar clinical signs. Considering the increased global movement of horses and equine products over the past decades, together with the socio-economic impact of previous AHS and EIA outbreaks, there is a clear demand for an early discrimination and a strict control of their transmission between enzootic and AHS/EIA-free regions. Currently, the individual control and prevention of AHS or EIA relies on a series of measures, including the restriction of animal movements, vector control, and the use of several laboratory techniques for viral identification, amongst others. Despite being widely employed in surveillance programmes and in the control of animal movements, the available serological assays can only detect AHS- or EIA-specific antibodies individually. In this work, a duplex lateral flow assay (LFA) for simultaneous detection and differentiation of specific antibodies against AHS virus (AHSV) and EIA virus (EIAV) was developed and evaluated with experimental and field serum samples. The duplex LFA was based on the AHSV-VP7 outer core protein and the EIAV-P26 major core protein. The results indicated that the duplex LFA presented a good analytical performance, detecting simultaneously and specifically antibodies against AHSV and EIAV. The initial diagnostic evaluation revealed a good agreement with results from the AHS and EIA tests prescribed by the OIE, and it highlighted the usefulness of the new AHSV/EIAV duplex LFA for an on-field and point-of-care first diagnosis.


Asunto(s)
Virus de la Enfermedad Equina Africana/inmunología , Enfermedad Equina Africana/diagnóstico , Anticuerpos Antivirales/sangre , Ensayo de Inmunoadsorción Enzimática/métodos , Anemia Infecciosa Equina/diagnóstico , Virus de la Anemia Infecciosa Equina/inmunología , Enfermedad Equina Africana/inmunología , Animales , Anemia Infecciosa Equina/inmunología , Caballos , Sistemas de Atención de Punto , Proteínas del Núcleo Viral/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...