RESUMEN
Despite the critical importance of virus disinfection by chlorine, our fundamental understanding of the relative susceptibility of different viruses to chlorine and robust quantitative relationships between virus disinfection rate constants and environmental parameters remains limited. We conducted a systematic review of virus inactivation by free chlorine and used the resulting data set to develop a linear mixed model that estimates chlorine inactivation rate constants for viruses based on experimental conditions. 570 data points were collected in our systematic review, representing 82 viruses over a broad range of environmental conditions. The harmonized inactivation rate constants under reference conditions (pH = 7.53, T = 20 °C, [Cl-] < 50 mM) spanned 5 orders of magnitude, ranging from 0.0196 to 1150 L mg-1 min-1, and uncovered important trends between viruses. Whereas common surrogate bacteriophage MS2 does not serve as a conservative chlorine disinfection surrogate for many human viruses, CVB5 was one of the most resistant viruses in the data set. The model quantifies the role of pH, temperature, and chloride levels across viruses, and an online tool allows users to estimate rate constants for viruses and conditions of interest. Results from the model identified potential shortcomings in current U.S. EPA drinking water disinfection requirements.
Asunto(s)
Cloro , Desinfección , Cloro/farmacología , Inactivación de Virus/efectos de los fármacos , Virus/efectos de los fármacos , Desinfectantes/farmacologíaRESUMEN
Manual flushing of building plumbing is commonly used to address water quality issues that arise from water stagnation. Autonomous flushing informed by sensors has the potential to aid in the management of building plumbing, but a number of knowledge gaps hinder its application. This study evaluates autonomous flushing of building plumbing with online sensor and actuator nodes deployed under kitchen sinks in five residential houses. Online oxidation-reduction potential (ORP) and temperature data were collected for nine weeks during the winter and summer in houses with both free chlorine and chloramine. ORP levels in houses with free chlorine residuals decreased after overnight stagnation. The overnight decrease in ORP was not observed when tap water was automatically flushed for five minutes at 6:00 h every morning. ORP levels in houses with chloramine residuals did not decrease consistently after overnight stagnation, and daily automated flushes did not have an observable effect on the ORP signals. Additional laboratory experiments were carried out to evaluate ORP signals during chlorine decay and after incremental changes in chlorine, as would be expected in building plumbing conditions. Results from the lab and field deployments suggest on-line ORP sensors may be used to detect free chlorine decay due to stagnating water, but are not as effective in detecting chloramine decay. However, field results also suggest ORP may not respond as expected on a timely manner after free chlorine or chloramine have been restored, hindering their applicability in developing control algorithms. In this paper we tested twice-daily five-minute automatic flushing and found that it counteracts water quality degradation associated with overnight stagnation in free chlorine systems. An automatic sensor-based flushing is proposed using online temperature sensor data to determine when flushing has reached water from the main. The results suggest that flushing informed by temperature sensors can reduce the flushing time by 46 % compared to the preset five-minute static flush.
Asunto(s)
Agua Potable , Ingeniería Sanitaria , Abastecimiento de Agua , Cloraminas , Cloro , Temperatura , Oxidación-ReducciónRESUMEN
Virus concentrations measured in municipal wastewater help inform both the water treatment necessary to protect human health and wastewater-based epidemiology. Wastewater measurements are typically PCR-based, and interpreting gene copy concentrations requires an understanding of the form and stability of the nucleic acids. Here, we study the persistence of model virus genomes in wastewater, the protective effects provided by the virus capsids, and the relative decay rates of the genome and infectious viruses. In benchtop batch experiments in wastewater influent at 25 °C, extraviral (+)ssRNA and dsDNA amplicons degraded by 90% within 15-19 min and 1.6-1.9 h, respectively. When encapsidated, the T90 for MS2 (+)ssRNA increased by 424× and the T90 for T4 dsDNA increased by 52×. The (+)ssRNA decay rates were similar for a range of amplicon sizes. For our model phages MS2 and T4, the nucleic acid signal in untreated wastewater disappeared shortly after the viruses lost infectivity. Combined, these results suggest that most viral genome copies measured in wastewater are encapsidated, that measured concentrations are independent of assay amplicon sizes, and that the virus genome decay rates of nonenveloped (i.e., naked) viruses are similar to inactivation rates. These findings are valuable for the interpretation of wastewater virus measurements.
Asunto(s)
ARN , Aguas Residuales , Humanos , Cápside , Genoma Viral , BioensayoRESUMEN
We measured concentrations of SARS-CoV-2, influenza A and B virus, respiratory syncytial virus (RSV), mpox virus, human metapneumovirus, norovirus GII, and pepper mild mottle virus nucleic acids in wastewater solids at twelve wastewater treatment plants in Central California, USA. Measurements were made daily for up to two years, depending on the wastewater treatment plant. Measurements were made using digital droplet (reverse-transcription-) polymerase chain reaction (RT-PCR) following best practices for making environmental molecular biology measurements. These data can be used to better understand disease occurrence in communities contributing to the wastewater.
Asunto(s)
Metapneumovirus , ARN Viral , Virus Sincitial Respiratorio Humano , SARS-CoV-2 , Humanos , COVID-19 , Aguas ResidualesRESUMEN
Wastewater-based epidemiology (WBE) emerged during the coronavirus disease 2019 (COVID-19) pandemic as a scalable and broadly applicable method for community-level monitoring of infectious disease burden. The lack of high-resolution fecal shedding data for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) limits our ability to link WBE measurements to disease burden. In this study, we present longitudinal, quantitative fecal shedding data for SARS-CoV-2 RNA, as well as for the commonly used fecal indicators pepper mild mottle virus (PMMoV) RNA and crAss-like phage (crAssphage) DNA. The shedding trajectories from 48 SARS-CoV-2-infected individuals suggest a highly individualized, dynamic course of SARS-CoV-2 RNA fecal shedding. Of the individuals that provided at least three stool samples spanning more than 14 days, 77% had one or more samples that tested positive for SARS-CoV-2 RNA. We detected PMMoV RNA in at least one sample from all individuals and in 96% (352/367) of samples overall. CrAssphage DNA was detected in at least one sample from 80% (38/48) of individuals and was detected in 48% (179/371) of all samples. The geometric mean concentrations of PMMoV and crAssphage in stool across all individuals were 8.7 × 104 and 1.4 × 104 gene copies/milligram-dry weight, respectively, and crAssphage shedding was more consistent for individuals than PMMoV shedding. These results provide us with a missing link needed to connect laboratory WBE results with mechanistic models, and this will aid in more accurate estimates of COVID-19 burden in sewersheds. Additionally, the PMMoV and crAssphage data are critical for evaluating their utility as fecal strength normalizing measures and for source-tracking applications. IMPORTANCE This research represents a critical step in the advancement of wastewater monitoring for public health. To date, mechanistic materials balance modeling of wastewater-based epidemiology has relied on SARS-CoV-2 fecal shedding estimates from small-scale clinical reports or meta-analyses of research using a wide range of analytical methodologies. Additionally, previous SARS-CoV-2 fecal shedding data have not contained sufficient methodological information for building accurate materials balance models. Like SARS-CoV-2, fecal shedding of PMMoV and crAssphage has been understudied to date. The data presented here provide externally valid and longitudinal fecal shedding data for SARS-CoV-2, PMMoV, and crAssphage which can be directly applied to WBE models and ultimately increase the utility of WBE.
Asunto(s)
COVID-19 , Tobamovirus , Humanos , SARS-CoV-2/genética , ARN Viral/genética , Tobamovirus/genéticaRESUMEN
Potable water reuse technologies are used to treat wastewater to drinking water quality to help sustain a community's water resources. California has long led the adoption of potable water reuse technologies in the United States and more states are exploring these technologies as water resources decline. Reuse technologies also need to achieve adequate reductions in microbial and chemical contaminant risks to meet public health goals and secure public acceptance. In vitro bioassays are a useful tool for screening if reuse treatment processes adequately reduce toxicity associated with a range of chemical classes that are contaminants of concern. In this study, we used an aryl hydrocarbon receptor (AhR) and an estrogen receptor luciferase bioassay to detect the presence of dioxin-like and estrogenic compounds across a 3800 m3/d carbon-based indirect potable reuse plant that uses carbon-based treatment (SWIFT-RC). Our results demonstrate significant removal of dioxin-like compounds across the SWIFT-RC treatment train. Estrogenicity declined across the treatment train for some months but was extremely variable and low with many samples falling below the method quantification level; consequently, we were not able to reliably determine estrogenicity trends for SWIFT-RC. Comparing the bioanalytical equivalent concentrations detected in the SWIFT-RC water with established monitoring trigger levels from the state of California suggests that SWIFT-RC produced water that met the bioassay guidelines. The log total organic carbon concentration and AhR assay equivalent concentrations are weakly correlated when data across all SWIFT-RC processes are included. Overall, this research demonstrates the performance of in vitro bioassays at a demonstration-scale carbon-based IPR system and highlights both the potential utility and challenges associated with these methods for assessing system performance.
Asunto(s)
Dioxinas , Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Purificación del Agua/métodos , Carbono , Contaminantes Químicos del Agua/análisis , BioensayoRESUMEN
High levels of viruses can be found in human excrement from infected individuals, a fraction of which can be emitted from toilet flushing. Unlike the common mix flush toilet (MFT), the urine-diverting toilet (UDT) separates urine from the toilet water. Specific focus on urine-associated viruses is needed because the UDT can emit different levels of urine-associated and fecal-borne viruses and urine has different properties compared to feces that can affect emission levels (e.g., protein content). In this work, we quantified emission levels of surrogate bacteriophages for urine-associated and fecal-borne viruses, MS2 and T3, from flushing a UDT and an MFT, with and without protein in the water. Emission levels of viruses in the water of the UDT were lower than that of the MFT by up to 1.2-log10 and 1.3-log10 for T3 and MS2, respectively. If urine is completely diverted in the UDT, virus emissions can be reduced by up to 4-log10. Based on these results and typical levels in urine and feces, we estimate that up to 107 and 108 gene copies of human viruses per flush can be released from the UDT and MFT, respectively. Lower emissions observed with the UDT suggest reduced exposure to viruses from flushing the UDT.
RESUMEN
Free available chlorine (FAC) is widely used to inactivate viruses by oxidizing viral components, including genomes. It is commonly assumed that hypochlorous acid (HOCl) is the chlorinating agent responsible for virus inactivation; however, recent studies have underscored that minor constituents of FAC existing in equilibrium with HOCl, such as molecular chlorine (Cl2), can influence FAC reactivity toward select organic compounds. This study measures the FAC reaction kinetics with dsDNA and ssDNA extracted from representative bacteriophages (T3 and ÏX174) in samples augmented with chloride. Herein, chloride enhances FAC reactivity toward dsDNA and, to a lesser extent, toward ssDNA, especially at pH < 7.5. The enhanced reactivity can be attributed to the formation of Cl2. Second-order rate constants were determined for reactions of ssDNA and dsDNA with HOCl and Cl2. DNA chlorination kinetics followed the reactivity-selectivity principle, where the more-reactive nucleophilic species (ssDNA, â¼100× more reactive than dsDNA) reacted less selectively with electrophilic FAC species. The addition of chloride was also shown to enhance the inactivation of bacteriophage T3 (dsDNA genome) by FAC but did not enhance the inactivation of bacteriophage ÏX174 (ssDNA genome). Overall, the results suggest that Cl2 is an important chlorinating agent of nucleic acids and viruses.
Asunto(s)
Ácidos Nucleicos , Purificación del Agua , Cloruros , Cloro/química , ADN , Concentración de Iones de Hidrógeno , Ácido Hipocloroso/química , Cinética , Purificación del Agua/métodosRESUMEN
BACKGROUND: The effective reproductive number, Re, is a critical indicator to monitor disease dynamics, inform regional and national policies, and estimate the effectiveness of interventions. It describes the average number of new infections caused by a single infectious person through time. To date, Re estimates are based on clinical data such as observed cases, hospitalizations, and/or deaths. These estimates are temporarily biased when clinical testing or reporting strategies change. OBJECTIVES: We show that the dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in wastewater can be used to estimate Re in near real time, independent of clinical data and without the associated biases. METHODS: We collected longitudinal measurements of SARS-CoV-2 RNA in wastewater in Zurich, Switzerland, and San Jose, California, USA. We combined this data with information on the temporal dynamics of shedding (the shedding load distribution) to estimate a time series proportional to the daily COVID-19 infection incidence. We estimated a wastewater-based Re from this incidence. RESULTS: The method to estimate Re from wastewater worked robustly on data from two different countries and two wastewater matrices. The resulting estimates were as similar to the Re estimates from case report data as Re estimates based on observed cases, hospitalizations, and deaths are among each other. We further provide details on the effect of sampling frequency and the shedding load distribution on the ability to infer Re. DISCUSSION: To our knowledge, this is the first time Re has been estimated from wastewater. This method provides a low-cost, rapid, and independent way to inform SARS-CoV-2 monitoring during the ongoing pandemic and is applicable to future wastewater-based epidemiology targeting other pathogens. https://doi.org/10.1289/EHP10050.
Asunto(s)
COVID-19 , SARS-CoV-2 , Número Básico de Reproducción , COVID-19/epidemiología , Humanos , ARN Viral , Aguas ResidualesRESUMEN
Wastewater-based epidemiology has gained attention throughout the world for detection of SARS-CoV-2 RNA in wastewater to supplement clinical testing. Raw wastewater consists of small particles, or solids, suspended in liquid. Methods have been developed to measure SARS-CoV-2 RNA in the liquid and the solid fraction of wastewater, with some studies reporting higher concentrations in the solid fraction. To investigate this relationship further, six laboratories collaborated to conduct a study across five publicly owned treatment works (POTWs) where both primary settled solids obtained from primary clarifiers and raw wastewater influent samples were collected and quantified for SARS-CoV-2 RNA. Settled solids and influent samples were processed by participating laboratories using their respective methods and retrospectively paired based on date of collection. SARS-CoV-2 RNA concentrations, on a mass equivalent basis, were higher in settled solids than in influent by approximately three orders of magnitude. Concentrations in matched settled solids and influent were positively and significantly correlated at all five POTWs. RNA concentrations in both settled solids and influent were correlated to COVID-19 incidence rates in the sewersheds and thus representative of disease occurrence; the settled solids methods appeared to produce a comparable relationship between SARS-CoV-2 RNA concentration measurements and incidence rates across all POTWs. Settled solids and influent methods showed comparable sensitivity, N gene detection frequency, and calculated empirical incidence rate lower limits. Analysis of settled solids for SARS-CoV-2 RNA has the advantage of using less sample volume to achieve similar sensitivity to influent methods.
RESUMEN
Changes in the circulation of SARS-CoV-2 variants of concern (VOCs) may require changes in the public health response to the COVID-19 pandemic, as they have the potential to evade vaccines and pharmaceutical interventions and may be more transmissive than other SARS-CoV-2 variants. As such, it is essential to track and prevent their spread in susceptible communities. We developed digital reverse transcription (RT)-PCR assays for mutations characteristic of VOCs and used them to quantify those mutations in samples of wastewater settled solids collected from a publicly owned treatment works (POTW) during different phases of the COVID-19 pandemic. Wastewater concentrations of single mutations characteristic of each VOC, normalized by the concentration of a conserved SARS-CoV-2 N gene, correlate with regional estimates of the proportion of clinical infections caused by each VOC. These results suggest that targeted RT-PCR assays can be used to detect variants circulating in communities and inform the public health response to the pandemic. IMPORTANCE Wastewater represents a pooled biological sample of the contributing community and thus a resource for assessing community health. Here, we show that emergence, spread, and disappearance of SARS-CoV-2 infections caused by variants of concern are reflected in the presence of variant genomic RNA in wastewater settled solids. This work highlights an important public health use case for wastewater.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Mutación , Pandemias , SARS-CoV-2/genética , Aguas ResidualesRESUMEN
Monitoring severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) is critical for public health management of coronavirus disease. Sequencing is resource-intensive and incompletely representative, and not all isolates can be sequenced. Because wastewater SARS-CoV-2 RNA concentrations correlate with coronavirus disease incidence in sewersheds, tracking VOCs through wastewater is appealing. We developed digital reverse transcription PCRs to monitor abundance of select mutations in Alpha and Delta VOCs in wastewater settled solids, applied these to July 2020-August 2021 samples from 2 large US metropolitan sewersheds, and compared results to estimates of VOC abundance from case isolate sequencing. Wastewater measurements tracked closely with case isolate estimates (Alpha, rp 0.82-0.88; Delta, rp 0.97). Mutations were detected in wastewater even at levels <5% of total SARS-CoV-2 RNA and in samples available 1-3 weeks before case isolate results. Wastewater variant monitoring should be strategically deployed to complement case isolate sequencing.
Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , Humanos , ARN Viral/genética , SARS-CoV-2/genética , Estados Unidos/epidemiología , Aguas Residuales , Monitoreo Epidemiológico Basado en Aguas ResidualesRESUMEN
Free chlorine disinfection is widely applied to inactivate viruses by reacting with their biomolecules, which include nucleic acids, proteins, and lipids. Knowing the reactivities of viral genomes with free chlorine and the protection that encapsidation provides would ultimately help predict virus susceptibility to the disinfectant. The relative reactivities of different viral genome types and the impact of viral higher order structure with free chlorine are poorly characterized. Here, we studied the reactivity of viral genomes representing four genome types from virus particles with diverse structures, namely, (+)ssRNA (MS2), dsRNA (φ6), ssDNA (φX174), and dsDNA (T3) with free chlorine. We compared the reactivities of these viral nucleic acids when they were suspended in phosphate buffer solutions (naked forms) and when they were in the native virus particles (encapsidated forms). The reactivities of nucleic acids were tracked by polymerase chain reaction (PCR)-based assays. The naked dsDNA of T3 was the least reactive with free chlorine, with an average second order rate constant normalized by the number of bases in the measured regions (in M-1 s-1 b-1) that was 34×, 65×, and 189× lower than those of the dsRNA of φ6, ssRNA of MS2, and ssDNA of φX174, respectively. Moreover, different regions in the ssRNA genome of MS2 and the dsRNA genome of φ6 exhibited statistically different reaction kinetics. The genomes within virus particles reacted slower than the naked genomes overall, but the extent of these differences varied among the four viruses. The results on viral nucleic acid reactivity help explain different susceptibilities of viruses to inactivation by free chlorine and also provide a valuable comparison of the susceptibilities of different nucleic acids to oxidants.
Asunto(s)
Ácidos Nucleicos , Virus , Cloro/farmacología , Desinfección/métodos , Inactivación de VirusRESUMEN
A number of recent retrospective studies have demonstrated that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA concentrations in wastewater are associated with coronavirus disease 2019 (COVID-19) cases in the corresponding sewersheds. Implementing high-resolution, prospective efforts across multiple plants depends on sensitive measurements that are representative of COVID-19 cases, scalable for high-throughput analysis, and comparable across laboratories. We conducted a prospective study across eight publicly owned treatment works (POTWs). A focus on SARS-CoV-2 RNA in solids enabled us to scale up our measurements with a commercial lab partner. Samples were collected daily, and results were posted to a website within 24 h. SARS-CoV-2 RNA in daily samples correlated with the incidence of COVID-19 cases in the sewersheds; a 1 log10 increase in SARS-CoV-2 RNA in settled solids corresponds to a 0.58 log10 (4×) increase in sewershed incidence rate. SARS-CoV-2 RNA signals measured with the commercial laboratory partner were comparable across plants and comparable to measurements conducted in a university laboratory when normalized by pepper mild mottle virus (PMMoV) RNA. Results suggest that SARS-CoV-2 RNA should be detectable in settled solids for COVID-19 incidence rates of >1/100,000 (range, 0.8 to 2.3 cases per 100,000). These sensitive, representative, scalable, and comparable methods will be valuable for future efforts to scale up wastewater-based epidemiology. IMPORTANCE Access to reliable, rapid monitoring data is critical to guide response to an infectious disease outbreak. For pathogens that are shed in feces or urine, monitoring wastewater can provide a cost-effective snapshot of transmission in an entire community via a single sample. In order for a method to be useful for ongoing COVID-19 monitoring, it should be sensitive for detection of low concentrations of SARS-CoV-2, representative of incidence rates in the community, scalable to generate data quickly, and comparable across laboratories. This paper presents a method utilizing wastewater solids to meet these goals, producing measurements of SARS-CoV-2 RNA strongly associated with COVID-19 cases in the sewershed of a publicly owned treatment work. Results, provided within 24 h, can be used to detect incidence rates as low as approximately 1/100,000 cases and can be normalized for comparison across locations generating data using different methods.
RESUMEN
SARS-CoV-2 RNA in wastewater settled solids is associated with COVID-19 incidence in sewersheds and therefore, there is a strong interest in using these measurements to augment traditional disease surveillance methods. A wastewater surveillance program should provide rapid turn around for sample measurements (ideally within 24 hours), but storage of samples is necessary for a variety of reasons including biobanking. Here we investigate how storage of wastewater solids at 4 °C, -20 °C, and -80 °C affects measured concentrations of SARS-CoV-2 RNA. We find that short term (7 or 8 d) storage of raw solids at 4 °C has little effect on measured concentrations of SARS-CoV-2 RNA, whereas longer term storage at 4 °C (35-122 d) or freezing reduces measurements by 60%, on average. We show that normalizing SARS-CoV-2 RNA concentrations by concentrations of pepper mild mottle virus (PMMoV) RNA, an endogenous wastewater virus, can correct for changes during storage as storage can have a similar effect on PMMoV RNA as on SARS-CoV-2 RNA. The reductions in SARS-CoV-2 RNA in solids during freeze thaws is less than those reported for the same target in liquid influent by several authors.
RESUMEN
Real-time quantitative polymerase chain reaction (qPCR) and digital PCR (dPCR) methods have revolutionized environmental microbiology, yielding quantitative organism-specific data of nucleic acid targets in the environment. Such data are essential for characterizing interactions and processes of microbial communities, assessing microbial contaminants in the environment (water, air, fomites), and developing interventions (water treatment, surface disinfection, air purification) to curb infectious disease transmission. However, our review of recent qPCR and dPCR literature in our field of health-related environmental microbiology showed that many researchers are not reporting necessary and sufficient controls and methods, which would serve to strengthen their study results and conclusions. Here, we describe the application, utility, and interpretation of the suite of controls needed to make high quality qPCR and dPCR measurements of microorganisms in the environment. Our presentation is organized by the discrete steps and operations typical of this measurement process. We propose systematic terminology to minimize ambiguity and aid comparisons among studies. Example schemes for batching and combining controls for efficient work flow are demonstrated. We describe critical reporting elements for enhancing data credibility, and we provide an element checklist in the Supporting Information. Additionally, we present several key principles in metrology as context for laboratories to devise their own quality assurance and quality control reporting framework. Following the EMMI guidelines will improve comparability and reproducibility among qPCR and dPCR studies in environmental microbiology, better inform engineering and public health actions for preventing disease transmission through environmental pathways, and for the most pressing issues in the discipline, focus the weight of evidence in the direction toward solutions.