RESUMEN
The tick Ixodes ricinus parasitizes a wide range of vertebrates. These hosts vary in the relative contribution to the feeding of the different tick life stages, and their interplay is pivotal in the transmission dynamics of tick-borne pathogens. We aimed to know if there is a phylogenetic signal in the feeding and propagation hosts of I. ricinus, independently of other traits, as well as in the amplification of Borrelia burgdorferi (s.l.) in feeding larvae. We used a compilation of 1127 published field surveys in Europe, providing data for 96,586 hosts, resulting in 265,124 larvae, 72,080 nymphs and 37,726 adults. The load of immature ticks on hosts showed a significant phylogenetic signal towards the genera Psammodromus, Podarcis, and Lacerta (nymphs only). We hypothesize that such signal is the background hallmark of the primitive hosts associations of I. ricinus, probably in the glaciation refugia. A secondary phylogenetic signal for tick immatures appeared for some genera of Rodentia and Eulipotyphla. Results suggest the notion that the tick gained these hosts after spread from glaciation refugia. Analyses support a phylogenetic signal in the tick adults, firmly linked to Cetartiodactyla, but not to Carnivora or Aves. This study provides the first demonstration of host preferences in the generalist tick I. ricinus. We further demonstrate that combinations of vertebrates contribute in different proportions supporting the tick life-cycle in biogeographical regions of the Western Palaearctic as each region has unique combinations of dominant hosts. Analysis of the amplification of B. burgdorferi (s.l.) demonstrated that each genospecies is better amplified by competent reservoirs with which a strong phylogenetic signal exists. These vertebrates are the same along the spatial range: environmental traits do not change the reservoirs along the large territory studied. The transmission of B. burgdorferi (s.l.) is amplified by a few species of vertebrates, that share biogeographical regions with the tick vector in variable proportions.
RESUMEN
BackgroundTo be better prepared for emerging wildlife-borne zoonoses, we need to strengthen wildlife disease surveillance.AimThe aim of this study was to create a topical overview of zoonotic pathogens in wildlife species to identify knowledge gaps and opportunities for improvement of wildlife disease surveillance.MethodsWe created a database, which is based on a systematic literature review in Embase focused on zoonotic pathogens in 10 common urban wildlife mammals in Europe, namely brown rats, house mice, wood mice, common voles, red squirrels, European rabbits, European hedgehogs, European moles, stone martens and red foxes. In total, we retrieved 6,305 unique articles of which 882 were included.ResultsIn total, 186 zoonotic pathogen species were described, including 90 bacteria, 42 helminths, 19 protozoa, 22 viruses and 15 fungi. Most of these pathogens were only studied in one single animal species. Even considering that some pathogens are relatively species-specific, many European countries have no (accessible) data on zoonotic pathogens in these relevant animal species. We used the Netherlands as an example to show how this database can be used by other countries to identify wildlife disease surveillance gaps on a national level. Only 4% of all potential host-pathogen combinations have been studied in the Netherlands.ConclusionsThis database comprises a comprehensive overview that can guide future research on wildlife-borne zoonotic diseases both on a European and national scale. Sharing and expanding this database provides a solid starting point for future European-wide collaborations to improve wildlife disease surveillance.
Asunto(s)
Animales Salvajes , Zoonosis , Animales , Animales Salvajes/microbiología , Europa (Continente)/epidemiología , Zoonosis/epidemiología , Bases de Datos Factuales , Humanos , Ratas , Sciuridae/microbiología , Erizos/microbiología , Conejos , Ratones , Vigilancia de la Población , Zorros/microbiología , Zorros/parasitologíaRESUMEN
BACKGROUND: In September 2014, there was sudden upsurge in the number of Eurasian red squirrels (Sciurus vulgaris) found dead in the Netherlands. High infection levels with the parasite Toxoplasma gondii were demonstrated, but it was unclear what had caused this increase in cases of fatal toxoplasmosis. In the present study, we aimed to gain more knowledge on the pathology and prevalence of T. gondii infections in Eurasian red squirrels in the Netherlands, on the T. gondii genotypes present, and on the determinants of the spatiotemporal variability in these T. gondii infections. The presence of the closely related parasite Hammondia hammondi was also determined. METHODS: Eurasian red squirrels that were found dead in the wild or that had died in wildlife rescue centres in the Netherlands over a period of seven years (2014-2020) were examined. Quantitative real-time polymerase chain reaction was conducted to analyse tissue samples for the presence of T. gondii and H. hammondi DNA. Toxoplasma gondii-positive samples were subjected to microsatellite typing and cluster analysis. A mixed logistic regression was used to identify climatic and other environmental predictors of T. gondii infection in the squirrels. RESULTS: A total of 178 squirrels were examined (49/178 T. gondii positive, 5/178 H. hammondi positive). Inflammation of multiple organs was the cause of death in 29 squirrels, of which 24 were also T. gondii polymerase chain reaction positive. Toxoplasma gondii infection was positively associated with pneumonia and hepatitis. Microsatellite typing revealed only T. gondii type II alleles. Toxoplasma gondii infection rates showed a positive correlation with the number of days of heavy rainfall in the previous 12 months. Conversely, they showed a negative association with the number of hot days within the 2-week period preceding the sampling date, as well as with the percentage of deciduous forest cover at the sampling site. CONCLUSIONS: Toxoplasma gondii infection in the squirrels appeared to pose a significant risk of acute mortality. The T. gondii genotype detected in this study is commonly found across Europe. The reasons for the unusually high infection rates and severe symptoms of these squirrels from the Netherlands remain unclear. The prevalence of T. gondii in the deceased squirrels was linked to specific environmental factors. However, whether the increase in the number of dead squirrels indicated a higher environmental contamination with T. gondii oocysts has yet to be established.
Asunto(s)
Enfermedades de los Roedores , Sarcocystidae , Toxoplasma , Toxoplasmosis , Animales , Sciuridae , GenotipoRESUMEN
BACKGROUND: The main objective of this study was to determine the prevalence of nine vector-borne pathogens or pathogen genera in roe deer (Capreolus capreolus) in the Netherlands, and to identify which host variables predict vector-borne pathogen presence in roe deer. The host variables examined were the four host factors 'age category', 'sex', 'nutritional condition' and 'health status', as well as 'roe deer density'. METHODS: From December 2009 to September 2010, blood samples of 461 roe deer were collected and analysed by polymerase chain reaction (PCR) for the presence of genetic material from Anaplasma phagocytophilum, Bartonella spp., Babesia spp., Borrelia burgdorferi sensu lato (s.l.), Borrelia miyamotoi, Neoehrlichia mikurensis, Rickettsia spp., and epizootic haemorrhagic disease virus (EHDV), and by commercial enzyme-linked immunosorbent assay (ELISA) for antibodies against bluetongue virus (BTV). The possible associations of host factors and density with pathogen prevalence and co-infection, and in the case of A. phagocytophilum with bacterial load, were assessed using generalized linear modelling. RESULTS AND CONCLUSION: Analysis revealed the following prevalence in roe deer: A. phagocytophilum 77.9%, Bartonella spp. 77.7%, Babesia spp. 17.4%, Rickettsia spp. 3.3%, B. burgdorferi sensu lato 0.2%. Various co-infections were found, of which A. phagocytophilum and Bartonella spp. (49.7% of infected roe deer) and A. phagocytophilum, Bartonella spp. and Babesia spp. (12.2% of infected roe deer) were the most common. Anaplasma phagocytophilum, Babesia spp., and co-infection prevalence were significantly higher in calves than in adult roe deer, whereas the prevalence of Bartonella spp. was lower in roe deer in good nutritional condition than in deer in poor nutritional condition. Local roe deer density was not associated with pathogen presence. The high prevalence of A. phagocytophilum, Bartonella spp., and Babesia spp. is evidence for the role of roe deer as reservoirs for these pathogens. Additionally, the results suggest a supportive role of roe deer in the life-cycle of Rickettsia spp. in the Netherlands.