Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38464254

RESUMEN

Eukaryotic chromosome segregation requires kinetochores, multi-megadalton protein machines that assemble on the centromeres of chromosomes and mediate attachments to dynamic spindle microtubules. Kinetochores are built from numerous complexes, and understanding how they are arranged is key to understanding how kinetochores perform their multiple functions. However, an integrated understanding of kinetochore architecture has not yet been established. To address this, we purified functional, native kinetochores from Kluyveromyces marxianus and examined them by electron microscopy, cryo-electron tomography and atomic force microscopy. The kinetochores are extremely large, flexible assemblies that exhibit features consistent with prior models. We assigned kinetochore polarity by visualizing their interactions with microtubules and locating the microtubule binder Ndc80c. This work shows that isolated kinetochores are more dynamic and complex than what might be anticipated based on the known structures of recombinant subassemblies, and provides the foundation to study the global architecture and functions of kinetochores at a structural level.

3.
Curr Protoc ; 3(5): e779, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37227098

RESUMEN

Microtubules, polymers of α, ß-tubulin heterodimers, are organized into multi-microtubule arrays for diverse cellular functions. The dynamic properties of microtubule arrays govern their structural and functional properties. While numerous insights into the biophysical mechanisms underlying microtubule organization have been gleaned from in vitro reconstitution studies, the assays are largely restricted to visualization of single or pairs of microtubules. Thus, the dynamic processes underlying the remodeling of multi-microtubule arrays remain poorly understood. Recent work shows that Atomic Force Microscopy (AFM) enables the visualization of nanoscale dynamics within multi-microtubule 2D arrays. In this assay, electrostatic interactions permit the non-specific adsorption of microtubule arrays to mica. AFM imaging in tapping mode, a gentle method of imaging, allows the visualization of microtubules and protofilaments without sample damage. The height information captured by AFM imaging enables the tracking of structural changes in microtubules and protofilaments within multi-microtubule arrays over time. The experimental data from the method described here reveal previously unseen modes of nanoscale dynamics in microtubule bundles formed by the microtubule-crosslinking protein PRC1 in the presence of the depolymerase MCAK. The observations demonstrate the potential of AFM imaging in transforming our understanding of the fundamental cellular process by which multi-microtubule arrays are dynamically assembled and disassembled. © 2023 Wiley Periodicals LLC. Basic Protocol: Sample preparation and real-time visualization of microtubule arrays by atomic force microscopy Alternate Protocol: Protocol for coating surface with poly-L-lysine and immobilizing microtubules.


Asunto(s)
Citoesqueleto , Microtúbulos , Microscopía de Fuerza Atómica , Tubulina (Proteína) , Adsorción
4.
Proc Natl Acad Sci U S A ; 119(28): e2120193119, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35867749

RESUMEN

Coupling of motor proteins within arrays drives muscle contraction, flagellar beating, chromosome segregation, and other biological processes. Current models of motor coupling invoke either direct mechanical linkage or protein crowding, which rely on short-range motor-motor interactions. In contrast, coupling mechanisms that act at longer length scales remain largely unexplored. Here we report that microtubules can physically couple motor movement in the absence of detectable short-range interactions. The human kinesin-4 Kif4A changes the run length and velocity of other motors on the same microtubule in the dilute binding limit, when approximately 10-nm-sized motors are much farther apart than the motor size. This effect does not depend on specific motor-motor interactions because similar changes in Kif4A motility are induced by kinesin-1 motors. A micrometer-scale attractive interaction potential between motors is sufficient to recreate the experimental results in a biophysical model. Unexpectedly, our theory suggests that long-range microtubule-mediated coupling affects not only binding kinetics but also motor mechanochemistry. Therefore, the model predicts that motors can sense and respond to motors bound several micrometers away on a microtubule. Our results are consistent with a paradigm in which long-range motor interactions along the microtubule enable additional forms of collective motor behavior, possibly due to changes in the microtubule lattice.


Asunto(s)
Cinesinas , Microtúbulos , Movimiento , Humanos , Cinesinas/química , Cinética , Microtúbulos/química , Unión Proteica
5.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35101922

RESUMEN

The dynamic reorganization of microtubule-based cellular structures, such as the spindle and the axoneme, fundamentally depends on the dynamics of individual polymers within multimicrotubule arrays. A major class of enzymes implicated in both the complete demolition and fine size control of microtubule-based arrays are depolymerizing kinesins. How different depolymerases differently remodel microtubule arrays is poorly understood. A major technical challenge in addressing this question is that existing optical or electron-microscopy methods lack the spatial-temporal resolution to observe the dynamics of individual microtubules within larger arrays. Here, we use atomic force microscopy (AFM) to image depolymerizing arrays at single-microtubule and protofilament resolution. We discover previously unseen modes of microtubule array destabilization by conserved depolymerases. We find that the kinesin-13 MCAK mediates asynchronous protofilament depolymerization and lattice-defect propagation, whereas the kinesin-8 Kip3p promotes synchronous protofilament depolymerization. Unexpectedly, MCAK can depolymerize the highly stable axonemal doublets, but Kip3p cannot. We propose that distinct protofilament-level activities underlie the functional dichotomy of depolymerases, resulting in either large-scale destabilization or length regulation of microtubule arrays. Our work establishes AFM as a powerful strategy to visualize microtubule dynamics within arrays and reveals how nanometer-scale substrate specificity leads to differential remodeling of micron-scale cytoskeletal structures.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Factores Despolimerizantes de la Actina/metabolismo , Citoesqueleto/metabolismo , Humanos , Microscopía de Fuerza Atómica/métodos , Microtúbulos/fisiología , Tubulina (Proteína)/metabolismo
6.
Nat Chem Biol ; 17(9): 964-974, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34083810

RESUMEN

A remarkable feature of the microtubule cytoskeleton is the coexistence of subpopulations having different dynamic properties. A prominent example is the anaphase spindle, where stable antiparallel bundles exist alongside dynamic microtubules and provide spatial cues for cytokinesis. How are the dynamics of spatially proximal arrays differentially regulated? We reconstitute a minimal system of three midzone proteins: microtubule-crosslinker PRC1 and its interactors CLASP1 and Kif4A, proteins that promote and suppress microtubule elongation, respectively. We find that their collective activity promotes elongation of single microtubules while simultaneously stalling polymerization of crosslinked bundles. This differentiation arises from (1) strong rescue activity of CLASP1, which overcomes the weaker effects of Kif4A on single microtubules, and (2) lower microtubule- and PRC1-binding affinity of CLASP1, which permits the dominance of Kif4A at overlaps. In addition to canonical mechanisms where antagonistic regulators set microtubule length, our findings illuminate design principles by which collective regulator activity creates microenvironments of arrays with distinct dynamic properties.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cinesinas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/aislamiento & purificación , Humanos , Cinesinas/genética , Cinesinas/aislamiento & purificación , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/aislamiento & purificación
7.
Elife ; 102021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34114950

RESUMEN

The organization of micron-sized, multi-microtubule arrays from individual microtubules is essential for diverse cellular functions. The microtubule polymer is largely viewed as a passive building block during the organization process. An exception is the 'tubulin code' where alterations to tubulin at the amino acid level can influence the activity of microtubule-associated proteins. Recent studies reveal that micron-scale geometrical features of individual microtubules and polymer networks, such as microtubule length, overlap length, contact angle, and lattice defects, can also regulate the activity of microtubule-associated proteins and modulate polymer dynamics. We discuss how the interplay between such geometrical properties of the microtubule lattice and the activity of associated proteins direct multiple aspects of array organization, from microtubule nucleation and coalignment to specification of array dimensions and remodeling of dynamic networks. The mechanisms reviewed here highlight micron-sized features of microtubules as critical parameters to be routinely investigated in the study of microtubule self-organization.


Asunto(s)
Microtúbulos/metabolismo , Fenómenos Biológicos , Humanos , Interfase , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Tamaño de la Partícula , Polímeros/metabolismo , Tubulina (Proteína)/metabolismo
8.
J Phys Chem Lett ; 11(10): 4173-4178, 2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-32356665

RESUMEN

Substrate rigidity modulates cell mechanics, which affect cell migration and proliferation. Quantifying the effects of substrate rigidity on cancer cell mechanics requires a quantifiable parameter that can be measured for individual cells, as well as a substrate platform with rigidity being the only variable. Here we used single-cell force spectroscopy to pull cancer cells on substrates varying only in rigidity, and extracted a parameter from the force-distance curves to be used to quantify the properties of membrane tethers. Our results showed that tether force increases with substrate rigidity until it reaches its asymptotic limit. The variations are similar for all three cancer cell lines studied, and the largest change occurs in the rigidity regions of softer tissues, indicating a universal response of cancer cell elasticity to substrate rigidity.


Asunto(s)
Membrana Celular/química , Análisis de la Célula Individual , Línea Celular Tumoral , Elasticidad , Humanos , Microscopía de Fuerza Atómica
9.
J Phys Chem B ; 122(47): 10653-10658, 2018 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-30351116

RESUMEN

Activation of proteins often involves conformational transitions, and these switches are often difficult to characterize in multidomain proteins. Full-length factor H (FH), consisting of 20 small consensus repeat domains (150 kD), is a complement control protein that regulates the activity of the alternative complement pathway. Different preparations of FH can also reduce the disulfide bonds linking large Von Willebrand factor (VWF) multimers into smaller, less adhesive forms. In contrast, commercially available purified FH (pFH) has little or no VWF reductase activity unless the pFH is chemically modified by either ethylenediaminetetraacetic acid (EDTA) or urea. We used atomic force microscopy single molecule force measurements to investigate different forms of FH, including recombinant FH and pFH, in the presence or absence of EDTA and urea, and to correlate the conformational changes to its activities. We found that the FH conformation depends on the method used for sample preparation, which affects the VWF reductase activity of FH.


Asunto(s)
Oxidorreductasas/química , Factor de von Willebrand/química , Catálisis , Factor H de Complemento/química , Detergentes/química , Células HEK293 , Humanos , Microscopía de Fuerza Atómica/métodos , Octoxinol/química , Organofosfatos/química , Oxidación-Reducción , Conformación Proteica , Dominios Proteicos , Proteínas Recombinantes/química , Termodinámica
10.
Sci Rep ; 6: 31174, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27503635

RESUMEN

Graphene nanoribbons (GNR), can be prepared in bulk quantities for large-area applications by reducing the product from the lengthwise oxidative unzipping of multiwalled carbon nanotubes (MWNT). Recently, the biomaterials application of GNR has been explored, for example, in the pore to be used for DNA sequencing. Therefore, understanding the polymer behavior of GNR in solution is essential in predicting GNR interaction with biomaterials. Here, we report experimental studies of the solution-based mechanical properties of GNR and their parent products, graphene oxide nanoribbons (GONR). We used atomic force microscopy (AFM) to study their mechanical properties in solution and showed that GNR and GONR have similar force-extension behavior as in biopolymers such as proteins and DNA. The rigidity increases with reducing chemical functionalities. The similarities in rigidity and tunability between nanoribbons and biomolecules might enable the design and fabrication of GNR-biomimetic interfaces.

11.
Phys Rev E ; 93(1): 012410, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26871104

RESUMEN

Von Willebrand factor (VWF) multimers are large adhesive proteins that are essential to the initiation of hemostatic plugs at sites of vascular injury. The binding of VWF multimers to platelets, as well as VWF proteolysis, is regulated by shear stresses that alter VWF multimeric conformation. We used single molecule manipulation with atomic force microscopy (AFM) to investigate the effect of high fluid shear stress on soluble dimeric and multimeric forms of VWF. VWF dimers are the smallest unit that polymerizes to construct large VWF multimers. The resistance to mechanical unfolding with or without exposure to shear stress was used to evaluate VWF conformational forms. Our data indicate that, unlike recombinant VWF multimers (RVWF), recombinant dimeric VWF (RDVWF) unfolding force is not altered by high shear stress (100dynes/cm^{2} for 3 min at 37^{∘}C). We conclude that under the shear conditions used (100dynes/cm^{2} for 3 min at 37^{∘}C), VWF dimers do not self-associate into a conformation analogous to that attained by sheared large VWF multimers.


Asunto(s)
Desplegamiento Proteico , Factor de von Willebrand/química , Células HEK293 , Humanos , Microscopía de Fuerza Atómica , Modelos Moleculares , Polimerizacion , Multimerización de Proteína , Proteínas Recombinantes/química , Estrés Mecánico
12.
Matrix Biol ; 50: 27-38, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26546708

RESUMEN

Perlecan/HSPG2, a large, monomeric heparan sulfate proteoglycan (HSPG), is a key component of the lacunar canalicular system (LCS) of cortical bone, where it is part of the mechanosensing pericellular matrix (PCM) surrounding the osteocytic processes and serves as a tethering element that connects the osteocyte cell body to the bone matrix. Within the pericellular space surrounding the osteocyte cell body, perlecan can experience physiological fluid flow drag force and in that capacity function as a sensor to relay external stimuli to the osteocyte cell membrane. We previously showed that a reduction in perlecan secretion alters the PCM fiber composition and interferes with bone's response to a mechanical loading in vivo. To test our hypothesis that perlecan core protein can sustain tensile forces without unfolding under physiological loading conditions, atomic force microscopy (AFM) was used to capture images of perlecan monomers at nanoscale resolution and to perform single molecule force measurement (SMFMs). We found that the core protein of purified full-length human perlecan is of suitable size to span the pericellular space of the LCS, with a measured end-to-end length of 170±20 nm and a diameter of 2-4 nm. Force pulling revealed a strong protein core that can withstand over 100 pN of tension well over the drag forces that are estimated to be exerted on the individual osteocyte tethers. Data fitting with an extensible worm-like chain model showed that the perlecan protein core has a mean elastic constant of 890 pN and a corresponding Young's modulus of 71 MPa. We conclude that perlecan has physical properties that would allow it to act as a strong but elastic tether in the LCS.


Asunto(s)
Proteoglicanos de Heparán Sulfato/metabolismo , Osteocitos/metabolismo , Matriz Ósea/metabolismo , Medios de Cultivo Condicionados/química , Módulo de Elasticidad , Células HT29 , Humanos , Microscopía de Fuerza Atómica , Osteocitos/citología , Resistencia a la Tracción
13.
J Phys Chem B ; 119(16): 5132-5, 2015 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-25825924

RESUMEN

Free energy landscapes provide information on the dynamics of proteins and nucleic acid folding. It has been demonstrated that such landscapes can be reconstructed from single molecule force measurement data using Jarzynski's equality, which requires only stretching data. However, when the process is reversible, the Crooks fluctuation theorem combines both stretch and relaxation force data for the analysis and can offer more rapid convergence of free energy estimates of different states. Here we demonstrate that, similar to Jarzynski's equality, the Crooks fluctuation theorem can be used to reconstruct the full free energy landscapes. In addition, when the free energy landscapes exhibit multiple folding pathways, one can use Jarzynski's equality to reconstruct individual free energy pathways if the experimental data show distinct work distributions. We applied the method to reconstruct the overstretching transition of poly(dA) to demonstrate that the nonequilibrium work theorem combined with single molecule force measurements provides a clear picture of the free energy landscapes.


Asunto(s)
ADN/química , Fenómenos Mecánicos , Poli A/química , Termodinámica
14.
Nanomaterials (Basel) ; 5(1): 246-267, 2015 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-28347009

RESUMEN

Quantifying the basic intra- and inter-molecular forces of DNA has helped us to better understand and further predict the behavior of DNA. Single molecule technique elucidates the mechanics of DNA under applied external forces, sometimes under extreme forces. On the other hand, ensemble studies of DNA molecular force allow us to extend our understanding of DNA molecules under other forces such as electrostatic and hydration forces. Using a variety of techniques, we can have a comprehensive understanding of DNA molecular forces, which is crucial in unraveling the complex DNA functions in living cells as well as in designing a system that utilizes the unique properties of DNA in nanotechnology.

15.
Cell Biosci ; 3(1): 25, 2013 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-23731596

RESUMEN

Mechanical force is present in all aspects of living systems. It affects the conformation of molecules, the shape of cells, and the morphology of tissues. All of these are crucial in architecture-dependent biological functions. Nanoscience of advanced materials has provided knowledge and techniques that can be used to understand how mechanical force is involved in biological systems, as well as to open new avenues to tailor-made bio-mimetic materials with desirable properties.In this article, we describe models and show examples of how force is involved in molecular functioning, cell shape patterning, and tissue morphology.

16.
Phys Rev Lett ; 110(10): 108102, 2013 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-23521301

RESUMEN

The mechanical force-induced activation of the adhesive protein von Willebrand factor (VWF), which experiences high hydrodynamic forces, is essential in initiating platelet adhesion. The importance of the mechanical force-induced functional change is manifested in the multimeric VWF's crucial role in blood coagulation, when high fluid shear stress activates plasma VWF (PVWF) multimers to bind platelets. Here, we showed that a pathological level of high shear stress exposure of PVWF multimers results in domain conformational changes, and the subsequent shifts in the unfolding force allow us to use force as a marker to track the dynamic states of the multimeric VWF. We found that shear-activated PVWF multimers are more resistant to mechanical unfolding than nonsheared PVWF multimers, as indicated in the higher peak unfolding force. These results provide insight into the mechanism of shear-induced activation of PVWF multimers.


Asunto(s)
Modelos Biológicos , Factor de von Willebrand/química , Agregación Plaquetaria , Conformación Proteica , Estructura Terciaria de Proteína , Desplegamiento Proteico , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA