Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4025, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740804

RESUMEN

Intracellular membranes composing organelles of eukaryotes include membrane proteins playing crucial roles in physiological functions. However, a comprehensive understanding of the cellular responses triggered by intracellular membrane-focused oxidative stress remains elusive. Herein, we report an amphiphilic photocatalyst localised in intracellular membranes to damage membrane proteins oxidatively, resulting in non-canonical pyroptosis. Our developed photocatalysis generates hydroxyl radicals and hydrogen peroxides via water oxidation, which is accelerated under hypoxia. Single-molecule magnetic tweezers reveal that photocatalysis-induced oxidation markedly destabilised membrane protein folding. In cell environment, label-free quantification reveals that oxidative damage occurs primarily in membrane proteins related to protein quality control, thereby aggravating mitochondrial and endoplasmic reticulum stress and inducing lytic cell death. Notably, the photocatalysis activates non-canonical inflammasome caspases, resulting in gasdermin D cleavage to its pore-forming fragment and subsequent pyroptosis. These findings suggest that the oxidation of intracellular membrane proteins triggers non-canonical pyroptosis.


Asunto(s)
Inflamasomas , Proteínas de la Membrana , Oxidación-Reducción , Piroptosis , Humanos , Inflamasomas/metabolismo , Proteínas de la Membrana/metabolismo , Estrés Oxidativo , Catálisis , Estrés del Retículo Endoplásmico , Peróxido de Hidrógeno/metabolismo , Proteínas de Unión a Fosfato/metabolismo , Radical Hidroxilo/metabolismo , Mitocondrias/metabolismo , Membranas Intracelulares/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Animales , Procesos Fotoquímicos , Pliegue de Proteína , Caspasas/metabolismo , Gasderminas
2.
J Mol Biol ; 435(11): 167975, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37330286

RESUMEN

Single-molecule force spectroscopy is a unique method that can probe the structural changes of single proteins at a high spatiotemporal resolution while mechanically manipulating them over a wide force range. Here, we review the current understanding of membrane protein folding learned by using the force spectroscopy approach. Membrane protein folding in lipid bilayers is one of the most complex biological processes in which diverse lipid molecules and chaperone proteins are intricately involved. The approach of single protein forced unfolding in lipid bilayers has produced important findings and insights into membrane protein folding. This review provides an overview of the forced unfolding approach, including recent achievements and technical advances. Progress in the methods can reveal more interesting cases of membrane protein folding and clarify general mechanisms and principles.


Asunto(s)
Membrana Dobles de Lípidos , Proteínas de la Membrana , Membrana Dobles de Lípidos/química , Proteínas de la Membrana/química , Microscopía de Fuerza Atómica/métodos , Pliegue de Proteína , Análisis Espectral , Imagen Individual de Molécula
3.
Elife ; 122023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37249211

RESUMEN

Single-molecule tweezers, such as magnetic tweezers, are powerful tools for probing nm-scale structural changes in single membrane proteins under force. However, the weak molecular tethers used for the membrane protein studies have limited the observation of long-time, repetitive molecular transitions due to force-induced bond breakage. The prolonged observation of numerous transitions is critical in reliable characterizations of structural states, kinetics, and energy barrier properties. Here, we present a robust single-molecule tweezer method that uses dibenzocyclooctyne cycloaddition and traptavidin binding, enabling the estimation of the folding 'speed limit' of helical membrane proteins. This method is >100 times more stable than a conventional linkage system regarding the lifetime, allowing for the survival for ~12 hr at 50 pN and ~1000 pulling cycle experiments. By using this method, we were able to observe numerous structural transitions of a designer single-chained transmembrane homodimer for 9 hr at 12 pN and reveal its folding pathway including the hidden dynamics of helix-coil transitions. We characterized the energy barrier heights and folding times for the transitions using a model-independent deconvolution method and the hidden Markov modeling analysis, respectively. The Kramers rate framework yields a considerably low-speed limit of 21 ms for a helical hairpin formation in lipid bilayers, compared to µs scale for soluble protein folding. This large discrepancy is likely due to the highly viscous nature of lipid membranes, retarding the helix-helix interactions. Our results offer a more valid guideline for relating the kinetics and free energies of membrane protein folding.


Asunto(s)
Proteínas de la Membrana , Pliegue de Proteína , Proteínas de la Membrana/química , Fenómenos Mecánicos , Cinética , Entropía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA