Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Hum Mol Genet ; 29(20): 3431-3442, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33075815

RESUMEN

We describe a lethal combined nervous and reproductive systems disease in three affected siblings of a consanguineous family. The phenotype was characterized by visceroautonomic dysfunction (neonatal bradycardia/apnea, feeding problems, hyperactive startle reflex), severe postnatal progressive neurological abnormalities (including abnormal neonatal cry, hypotonia, epilepsy, polyneuropathy, cerebral gray matter atrophy), visual impairment, testicular dysgenesis in males and sudden death at infant age by brainstem-mediated cardiorespiratory arrest. Whole-exome sequencing revealed a novel homozygous frameshift variant p.Val242GlufsTer52 in the TSPY-like 1 gene (TSPYL1). The truncated TSPYL1 protein that lacks the nucleosome assembly protein domain was retained in the Golgi of fibroblasts from the three patients, whereas control fibroblasts express full-length TSPYL1 in the nucleus. Proteomic analysis of nuclear extracts from fibroblasts identified 24 upregulated and 20 downregulated proteins in the patients compared with 5 controls with 'regulation of cell cycle' as the highest scored biological pathway affected. TSPYL1-deficient cells had prolonged S and G2 phases with reduced cellular proliferation rates. Tspyl1 depletion in zebrafish mimicked the patients' phenotype with early lethality, defects in neurogenesis and cardiac dilation. In conclusion, this study reports the third pedigree with recessive TSPYL1 variants, confirming that TSPYL1 deficiency leads to a combined nervous and reproductive systems disease, and provides for the first time insights into the disease mechanism.


Asunto(s)
Fibroblastos/patología , Mutación del Sistema de Lectura , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Proteoma/análisis , Muerte Súbita del Lactante/patología , Animales , Femenino , Fibroblastos/metabolismo , Humanos , Lactante , Recién Nacido , Masculino , Linaje , Fenotipo , Muerte Súbita del Lactante/genética , Secuenciación del Exoma , Pez Cebra
4.
Haematologica ; 102(4): 695-706, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28082341

RESUMEN

Gray platelet syndrome is named after the gray appearance of platelets due to the absence of α-granules. It is caused by recessive mutations in NBEAL2, resulting in macrothrombocytopenia and myelofibrosis. Though using the term gray platelets for GATA1 deficiency has been debated, a reduced number of α-granules has been described for macrothrombocytopenia due to GATA1 mutations. We compared platelet size and number of α-granules for two NBEAL2 and two GATA1-deficient patients and found reduced numbers of α-granules for all, with the defect being more pronounced for NBEAL2 deficiency. We further hypothesized that the granule defect for GATA1 is due to a defective control of NBEAL2 expression. Remarkably, platelets from two patients, and Gata1-deficient mice, expressed almost no NBEAL2. The differentiation of GATA1 patient-derived CD34+ stem cells to megakaryocytes showed defective proplatelet and α-granule formation with strongly reduced NBEAL2 protein and ribonucleic acid expression. Chromatin immunoprecipitation sequencing revealed 5 GATA binding sites in a regulatory region 31 kb upstream of NBEAL2 covered by a H3K4Me1 mark indicative of an enhancer locus. Luciferase reporter constructs containing this region confirmed its enhancer activity in K562 cells, and mutagenesis of the GATA1 binding sites resulted in significantly reduced enhancer activity. Moreover, DNA binding studies showed that GATA1 and GATA2 physically interact with this enhancer region. GATA1 depletion using small interfering ribonucleic acid in K562 cells also resulted in reduced NBEAL2 expression. In conclusion, we herein show a long-distance regulatory region with GATA1 binding sites as being a strong enhancer for NBEAL2 expression.


Asunto(s)
Proteínas Sanguíneas/genética , Elementos de Facilitación Genéticos , Factor de Transcripción GATA1/metabolismo , Regulación de la Expresión Génica , Alelos , Plaquetas/metabolismo , Diferenciación Celular/genética , Factor de Transcripción GATA1/deficiencia , Factor de Transcripción GATA1/genética , Expresión Génica , Genes Recesivos , Genes Reporteros , Genes Ligados a X , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Homocigoto , Humanos , Megacariocitos/citología , Megacariocitos/metabolismo , Megacariocitos/ultraestructura , Mutación , Fenotipo , Unión Proteica , Interferencia de ARN , ARN Interferente Pequeño/genética , Trombocitopenia/sangre , Trombocitopenia/genética , Trombocitopenia/patología
5.
Sci Transl Med ; 8(328): 328ra30, 2016 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-26936507

RESUMEN

The Src family kinase (SFK) member SRC is a major target in drug development because it is activated in many human cancers, yet deleterious SRC germline mutations have not been reported. We used genome sequencing and Human Phenotype Ontology patient coding to identify a gain-of-function mutation in SRC causing thrombocytopenia, myelofibrosis, bleeding, and bone pathologies in nine cases. Modeling of the E527K substitution predicts loss of SRC's self-inhibitory capacity, which we confirmed with in vitro studies showing increased SRC kinase activity and enhanced Tyr(419) phosphorylation in COS-7 cells overexpressing E527K SRC. The active form of SRC predominates in patients' platelets, resulting in enhanced overall tyrosine phosphorylation. Patients with myelofibrosis have hypercellular bone marrow with trilineage dysplasia, and their stem cells grown in vitro form more myeloid and megakaryocyte (MK) colonies than control cells. These MKs generate platelets that are dysmorphic, low in number, highly variable in size, and have a paucity of α-granules. Overactive SRC in patient-derived MKs causes a reduction in proplatelet formation, which can be rescued by SRC kinase inhibition. Stem cells transduced with lentiviral E527K SRC form MKs with a similar defect and enhanced tyrosine phosphorylation levels. Patient-derived and E527K-transduced MKs show Y419 SRC-positive stained podosomes that induce altered actin organization. Expression of mutated src in zebrafish recapitulates patients' blood and bone phenotypes. Similar studies of platelets and MKs may reveal the mechanism underlying the severe bleeding frequently observed in cancer patients treated with next-generation SFK inhibitors.


Asunto(s)
Huesos/patología , Hemorragia/genética , Mutación/genética , Mielofibrosis Primaria/genética , Trombocitopenia/genética , Familia-src Quinasas/genética , Animales , Plaquetas/patología , Células COS , Chlorocebus aethiops , Femenino , Hematopoyesis , Hemorragia/complicaciones , Humanos , Masculino , Linaje , Fenotipo , Mielofibrosis Primaria/complicaciones , Trombocitopenia/complicaciones , Transfección , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...