Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(16): e34996, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39220920

RESUMEN

Most Campylobacter jejuni isolates carry the fucose utilization cluster (Cj0480c-Cj0489) that supports the metabolism of l-fucose and d-arabinose. In this study we quantified l-fucose and d-arabinose metabolism and metabolite production, and the impact on Caco-2 cell interaction and binding to fibronectin, using C. jejuni NCTC11168 and the closely related human isolate C. jejuni strain 286. When cultured with l-fucose and d-arabinose, both isolates showed increased survival and production of acetate, pyruvate and succinate, and the respective signature metabolites lactate and glycolic acid, in line with an overall upregulation of l-fucose cluster proteins. In vitro Caco-2 cell studies and fibronectin-binding experiments showed a trend towards higher invasion and a significantly higher fibronectin binding efficacy of C. jejuni NCTC11168 cells grown with l-fucose and d-arabinose, while no significant differences were found with C. jejuni 286. Both fibronectin binding proteins, CadF and FlpA, were detected in the two isolates, but were not significantly differentially expressed in l-fucose or d-arabinose grown cells. Comparative proteomics analysis linked the C. jejuni NCTC11168 phenotypes uniquely to the more than 135-fold upregulated protein Cj0608, putative TolC-like component MacC, which, together with the detected Cj0606 and Cj0607 proteins, forms the tripartite secretion system MacABC with putative functions in antibiotic resistance, cell envelope stress response and virulence in Gram negative pathogenic bacteria. Further studies are required to elucidate the role of the MacABC system in C. jejuni cell surface structure modulation and virulence.

2.
Int J Food Microbiol ; 410: 110486, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37992553

RESUMEN

Listeria monocytogenes is a facultative anaerobe which can cause a severe food-borne infection known as listeriosis. L. monocytogenes is capable of utilizing various nutrient sources including rhamnose, a naturally occurring deoxy sugar abundant in foods. L. monocytogenes can degrade rhamnose into lactate, acetate and 1,2-propanediol. Our previous study showed that addition of vitamin B12 stimulated anaerobic growth of L. monocytogenes on rhamnose due to the activation of bacterial microcompartments for 1,2-propanediol utilization (pdu BMC) with concomitant production of propionate and propanol. Notably, anaerobic 1,2-propanediol metabolism has been linked to virulence of enteric pathogens including Salmonella spp. and L. monocytogenes. In this study we investigated the impact of B12 and BMC activation on i) aerobic and anerobic growth of L. monocytogenes on rhamnose and ii) the level of virulence. We observed B12-induced pdu BMC activation and growth stimulation only in anaerobically grown cells. Comparative Caco-2 virulence assays showed that these pdu BMC-induced cells have significantly higher translocation efficiency compared to non-induced cells (anaerobic growth without B12; aerobic growth with or without B12), while adhesion and invasion capacity is similar for all cells. Comparative proteome analysis showed specific and overlapping responses linked to metabolic shifts, activation of stress defense proteins and virulence factors, with RNA polymerase sigma factor SigL, teichoic acid export ATP-binding protein TagH, DNA repair and protection proteins, RadA and DPS, and glutathione synthase GshAB, previously linked to activation of virulence response in L. monocytogenes, uniquely upregulated in anaerobically rhamnose grown pdu-induced cells. Our results shed light on possible effects of B12 on L. monocytogenes competitive fitness and virulence activation when utilizing rhamnose in anaerobic conditions encountered during transmission and the human intestine.


Asunto(s)
Listeria monocytogenes , Listeriosis , Humanos , Ramnosa/metabolismo , Células CACO-2 , Propilenglicol/metabolismo , Virulencia/genética , Vitamina B 12/farmacología , Vitamina B 12/metabolismo , Listeriosis/microbiología , Vitaminas/metabolismo , Proteínas Bacterianas/genética
3.
Int J Food Microbiol ; 283: 14-21, 2018 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-29935377

RESUMEN

Microbial population heterogeneity allows for a differential microbial response to environmental stresses and can lead to the selection of stress resistant variants. In this study, we have used two different stress resistant variants of Listeria monocytogenes LO28 with mutations in the rpsU gene encoding ribosomal protein S21, to elucidate features that can contribute to fitness, stress-tolerance and host interaction using a comparative gene profiling and phenotyping approach. Transcriptome analysis showed that 116 genes were upregulated and 114 genes were downregulated in both rpsU variants. Upregulated genes included a major contribution of SigB-controlled genes such as intracellular acid resistance-associated glutamate decarboxylase (GAD) (gad3), genes involved in compatible solute uptake (opuC), glycerol metabolism (glpF, glpK, glpD), and virulence (inlA, inlB). Downregulated genes in the two variants involved mainly genes involved in flagella synthesis and motility. Phenotyping results of the two rpsU variants matched the gene profiling data including enhanced freezing resistance conceivably linked to compatible solute accumulation, higher glycerol utilisation rates, and better adhesion to Caco 2 cells presumably linked to higher expression of internalins. Also, bright field and electron microscopy analysis confirmed reduced flagellation of the variants. The activation of SigB-mediated stress defence offers an explanation for the multiple-stress resistant phenotype in rpsU variants.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Listeria monocytogenes/genética , Listeria monocytogenes/patogenicidad , Listeriosis/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Células CACO-2 , Perfilación de la Expresión Génica , Humanos , Listeria monocytogenes/aislamiento & purificación , Listeria monocytogenes/fisiología , Fenotipo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Virulencia
4.
Front Microbiol ; 9: 3182, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30687242

RESUMEN

The increased availability of whole-genome-sequencing techniques generates a wealth of DNA data on numerous organisms, including foodborne pathogens such as Salmonella. However, how these data can be used to improve microbial risk assessment and understanding of Salmonella epidemiology remains a challenge. The aim of this study was to assess variability in in vitro virulence and genetic characteristics between and within different serovars. The phenotypic behavior of 59 strains of 32 different Salmonella enterica serovars from animal, human and food origin was assessed in an in vitro gastro-intestinal tract (GIT) system and they were analyzed for the presence of 233 putative virulence genes as markers for phenotypic prediction. The probability of in vitro infection, P(inf), defined as the fraction of infectious cells passing from inoculation to host cell invasion at the last stage of the GIT system, was interpreted as the in vitro virulence. Results showed that the (average) P(inf) of Salmonella serovars ranged from 5.3E-05 (S. Kedougou) to 5.2E-01 (S. Typhimurium). In general, a higher P(inf) on serovar level corresponded to higher reported human incidence from epidemiological reporting data. Of the 233 virulence genes investigated, only 101 showed variability in presence/absence among the strains. In vitro P(inf) was found to be positively associated with the presence of specific plasmid related virulence genes (mig-5, pef, rck, and spv). However, not all serovars with a relatively high P(inf), > 1E-02, could be linked with these specific genes. Moreover, some outbreak related strains (S. Heidelberg and S. Thompson) did not reveal this association with P(inf). No clear association with in vitro virulence P(inf) was identified when grouping serovars with the same virulence gene profile (virulence plasmid, Typhoid toxin, peg operon and stk operon). This study shows that the in vitro P(inf) variation among individual strains from the same serovar is larger than that found between serovars. Therefore, ranking P(inf) of S. enterica on serovar level alone, or in combination with a serovar specific virulence gene profile, cannot be recommended. The attribution of single biological phenomena to individual strains or serovars is not sufficient to improve the hazard characterization for S. enterica. Future microbial risk assessments, including virulence gene profiles, require a systematic approach linked to epidemiological studies rather than revealing differences in characteristics on serovar level alone.

5.
Front Microbiol ; 8: 1139, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28713334

RESUMEN

Different techniques are available for assessing differences in virulence of bacterial foodborne pathogens. The use of animal models or human volunteers is not expedient for various reasons; the use of epidemiological data is often hampered by lack of crucial data. In this paper, we describe a static, sequential gastrointestinal tract (GIT) model system in which foodborne pathogens are exposed to simulated gastric and intestinal contents of the human digestive tract, including the interaction of pathogens with the intestinal epithelium. The system can be employed with any foodborne bacterial pathogens. Five strains of Salmonella Heidelberg and one strain of Salmonella Typhimurium were used to assess the robustness of the system. Four S. Heidelberg strains originated from an outbreak, the fifth S. Heidelberg strain and the S. Typhimurium strain originated from routine meat inspections. Data from plate counts, collected for determining the numbers of surviving bacteria in each stage, were used to quantify both the experimental uncertainty and biological variability of pathogen survival throughout the system. For this, a hierarchical Bayesian framework using Markov chain Monte Carlo (MCMC) was employed. The model system is able to distinguish serovars/strains for in vitro infectivity when accounting for within strain biological variability and experimental uncertainty.

6.
PLoS One ; 12(1): e0169589, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28056081

RESUMEN

The presence of extended-spectrum ß-lactamase (ESBL) and plasmidic AmpC (pAmpC) producing Escherichia coli (EEC) in food animals, especially broilers, has become a major public health concern. The aim of the present study was to quantify the EEC exposure of humans in The Netherlands through the consumption of meat from different food animals. Calculations were done with a simplified Quantitative Microbiological Risk Assessment (QMRA) model. The model took the effect of pre-retail processing, storage at the consumers home and preparation in the kitchen (cross-contamination and heating) on EEC numbers on/in the raw meat products into account. The contribution of beef products (78%) to the total EEC exposure of the Dutch population through the consumption of meat was much higher than for chicken (18%), pork (4.5%), veal (0.1%) and lamb (0%). After slaughter, chicken meat accounted for 97% of total EEC load on meat, but chicken meat experienced a relatively large effect of heating during food preparation. Exposure via consumption of filet americain (a minced beef product consumed raw) was predicted to be highest (61% of total EEC exposure), followed by chicken fillet (13%). It was estimated that only 18% of EEC exposure occurred via cross-contamination during preparation in the kitchen, which was the only route by which EEC survived for surface-contaminated products. Sensitivity analysis showed that model output is not sensitive for most parameters. However, EEC concentration on meat other than chicken meat was an important data gap. In conclusion, the model assessed that consumption of beef products led to a higher exposure to EEC than chicken products, although the prevalence of EEC on raw chicken meat was much higher than on beef. The (relative) risk of this exposure for public health is yet unknown given the lack of a modelling framework and of exposure studies for other potential transmission routes.


Asunto(s)
Escherichia coli/enzimología , Escherichia coli/aislamiento & purificación , Carne/microbiología , beta-Lactamasas/metabolismo , Adolescente , Adulto , Anciano , Animales , Pollos , Niño , Femenino , Microbiología de Alimentos , Humanos , Masculino , Persona de Mediana Edad , Modelos Teóricos , Países Bajos , Carne Roja/microbiología , Medición de Riesgo , Adulto Joven
7.
Int J Food Microbiol ; 213: 130-8, 2015 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-25910947

RESUMEN

The potential for using whole genome sequencing (WGS) data in microbiological risk assessment (MRA) has been discussed on several occasions since the beginning of this century. Still, the proposed heuristic approaches have never been applied in a practical framework. This is due to the non-trivial problem of mapping microbial information consisting of thousands of loci onto a probabilistic scale for risks. The paradigm change for MRA involves translation of multidimensional microbial genotypic information to much reduced (integrated) phenotypic information and onwards to a single measure of human risk (i.e. probability of illness). In this paper a first approach in methodology development is described for the application of WGS data in MRA; this is supported by a practical example. That is, combining genetic data (single nucleotide polymorphisms; SNPs) for Shiga toxin-producing Escherichia coli (STEC) O157 with phenotypic data (in vitro adherence to epithelial cells as a proxy for virulence) leads to hazard identification in a Genome Wide Association Study (GWAS). This application revealed practical implications when using SNP data for MRA. These can be summarized by considering the following main issues: optimum sample size for valid inference on population level, correction for population structure, quantification and calibration of results, reproducibility of the analysis, links with epidemiological data, anchoring and integration of results into a systems biology approach for the translation of molecular studies to human health risk. Future developments in genetic data analysis for MRA should aim at resolving the mapping problem of processing genetic sequences to come to a quantitative description of risk. The development of a clustering scheme focusing on biologically relevant information of the microbe involved would be a useful approach in molecular data reduction for risk assessment.


Asunto(s)
Infecciones por Escherichia coli/epidemiología , Escherichia coli O157/genética , Microbiología de Alimentos , Inocuidad de los Alimentos , Adhesión Bacteriana/genética , Células Epiteliales/microbiología , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/prevención & control , Escherichia coli O157/crecimiento & desarrollo , Escherichia coli O157/aislamiento & purificación , Marcadores Genéticos/genética , Genoma Bacteriano/genética , Estudio de Asociación del Genoma Completo , Genómica , Genotipo , Humanos , Polimorfismo de Nucleótido Simple , Reproducibilidad de los Resultados , Medición de Riesgo
8.
Parasit Vectors ; 8: 210, 2015 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-25885888

RESUMEN

BACKGROUND: European hedgehogs (Erinaceus europaeus) are hosts for Ixodes hexagonus and I. ricinus ticks, which are vectors for zoonotic microorganisms. In addition, hedgehogs may carry several enteric zoonoses as well. It is unclear to what extent a presence of pathogens in hedgehogs poses a risk to public health, as information on the presence of zoonotic agents in hedgehogs in urban areas is relatively scarce. METHODS: Engorged ticks and hedgehog faeces were collected from rehabilitating hedgehogs. Ticks were screened individually for presence of Borrelia burgdorferi sensu lato, B. miyamotoi, Anaplasma phagocytophilum, and Candidatus Neoehrlichia mikurensis using PCR-based assays. Faecal samples were screened for presence of Campylobacter, Salmonella, Giardia, Cryptosporidium, and extended-spectrum cephalosporin-resistant-Escherichia coli (ESC)-resistant E. coli, using both culture-based and PCR-based methods. RESULTS: Anaplasma phagocytophilum and Borrelia genospecies B. afzelii, B. spielmanii, B. garinii, and B. burgdorferi sensu stricto were detected in both I. hexagonus and I. ricinus ticks. Despite their widespread distribution in the Netherlands, B. miyamotoi and Candidatus N. mikurensis were not detected in collected ticks. Analysis of hedgehog faecal samples revealed the presence of Salmonella enterica subspecies enterica and Campylobacter jejuni. In addition, ESC-resistant E. coli were observed in high prevalence in faecal samples, but no Shiga-toxin producing-E.coli were detected. Finally, potentially zoonotic protozoan parasites were observed in hedgehog faecal samples as well, including Giardia duodenalis assemblage A, Cryptosporidium parvum subtypes IIaA17G1R1 and IIcA5G3, and C. hominis subtype IbA10G2. CONCLUSIONS: European hedgehogs in (sub)urban areas harbor a number of zoonotic agents, and therefore may contribute to the spread and transmission of zoonotic diseases. The relatively high prevalence of B. burgdorferi s.l. and A. phagocytophilum in engorged ticks, suggests that hedgehogs contribute to their enzootic cycles in (sub)urban areas. To what extent can hedgehogs maintain the enteric zoonotic agents in natural cycles, and the role of (spill-back from) humans remains to be investigated.


Asunto(s)
Heces/microbiología , Heces/parasitología , Erizos/microbiología , Erizos/parasitología , Garrapatas/microbiología , Animales , Ciudades/epidemiología , Técnicas Microbiológicas , Países Bajos/epidemiología , Reacción en Cadena de la Polimerasa , Medición de Riesgo , Zoonosis/epidemiología
9.
J Food Prot ; 77(3): 388-94, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24674429

RESUMEN

Recent outbreaks with vegetable or fruits as vehicles have raised interest in the characterization of the public health risk due to microbial contamination of these commodities. Because qualitative and quantitative data regarding prevalence and concentration of various microbes are lacking, we conducted a survey to estimate the prevalence and contamination level of raw produce and the resulting minimally processed packaged salads as sold in The Netherlands. A dedicated sampling plan accounted for the amount of processed produce in relation to the amount of products, laboratory capacity, and seasonal influences. Over 1,800 samples of produce and over 1,900 samples of ready-to-eat mixed salads were investigated for Salmonella enterica serovars, Campylobacter spp., Escherichia coli O157, and Listeria monocytogenes. The overall prevalence in raw produce varied between 0.11% for E. coli O157 and L. monocytogenes and 0.38% for Salmonella. Prevalence point estimates for specific produce/pathogen combinations ranged for Salmonella from 0.53% in iceberg lettuce to 5.1% in cucumber. For Campylobacter, this ranged from 0.83% in endive to 2.7% in oak tree lettuce. These data will be used to determine the public health risk posed by the consumption of ready-to-eat mixed salads in The Netherlands.


Asunto(s)
Seguridad de Productos para el Consumidor , Contaminación de Alimentos/análisis , Salud Pública , Verduras/microbiología , Campylobacter/aislamiento & purificación , Recuento de Colonia Microbiana , Escherichia coli O157/aislamiento & purificación , Microbiología de Alimentos , Humanos , Listeria monocytogenes/aislamiento & purificación , Países Bajos , Prevalencia , Salmonella/aislamiento & purificación
10.
J Food Prot ; 77(3): 395-403, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24674430

RESUMEN

The objective of this study was to evaluate the microbial hazard associated with the consumption of mixed salads produced under standard conditions. The presence of Salmonella, Campylobacter spp., and Escherichia coli O157 in the Dutch production chain of mixed salads was determined. Microbial prevalence and concentration data from a microbiological surveillance study were used as inputs for the quantitative microbial risk assessment. Chain logistics, production figures, and consumption patterns were combined with the survey data for the risk assessment chain approach. The results of the sample analysis were used to track events from contamination through human illness. Wide 95% confidence intervals around the mean were found for estimated annual numbers of illnesses resulting from the consumption of mixed salads contaminated with Salmonella Typhimurium DT104 (0 to 10,300 cases), Campylobacter spp. (0 to 92,000 cases), or E. coli (0 to 800 cases). The main sources of uncertainty are the lack of decontamination data (i.e., produce washing during processing) and an appropriate dose-response relationship.


Asunto(s)
Contaminación de Alimentos/análisis , Manipulación de Alimentos/métodos , Enfermedades Transmitidas por los Alimentos/epidemiología , Verduras/microbiología , Campylobacter/aislamiento & purificación , Seguridad de Productos para el Consumidor , Escherichia coli O157/aislamiento & purificación , Humanos , Países Bajos/epidemiología , Salmonella/aislamiento & purificación
11.
Infect Immun ; 77(11): 5097-106, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19737906

RESUMEN

Hospital-acquired Enterococcus faecium isolates responsible for nosocomial outbreaks and invasive infections are enriched in the orf2351 and orf2430 genes, encoding the SgrA and EcbA LPXTG-like cell wall-anchored proteins, respectively. These two surface proteins were characterized to gain insight into their function, since they may have favored the rapid emergence of this nosocomial pathogen. We are the first to identify a surface adhesin among bacteria (SgrA) that binds to the extracellular matrix molecules nidogen 1 and nidogen 2, which are constituents of the basal lamina. EcbA is a novel E. faecium MSCRAMM (microbial surface component recognizing adhesive matrix molecules) that binds to collagen type V. In addition, both SgrA and EcbA bound to fibrinogen; however, SgrA targeted the alpha and beta chains, whereas EcbA bound to the gamma chain of fibrinogen. An E. faecium sgrA insertion mutant displayed reduced binding to both nidogens and fibrinogen. SgrA did not mediate binding of E. faecium cells to biotic materials, such as human intestinal epithelial cells, human bladder cells, and kidney cells, while this LPXTG surface adhesin is implicated in E. faecium biofilm formation. The acm and scm genes, encoding two other E. faecium MSCRAMMs, were expressed at the mRNA level together with sgrA during all phases of growth, whereas ecbA was expressed only in exponential and late exponential phase, suggesting orchestrated expression of these adhesins. Expression of these surface proteins, which bind to extracellular matrix proteins and are involved in biofilm formation (SgrA), may contribute to the pathogenesis of hospital-acquired E. faecium infections.


Asunto(s)
Adhesinas Bacterianas/genética , Biopelículas , Infección Hospitalaria/genética , Enterococcus faecium/fisiología , Infecciones por Bacterias Grampositivas/genética , Adhesinas Bacterianas/metabolismo , Secuencia de Aminoácidos , Adhesión Bacteriana/genética , Southern Blotting , Western Blotting , Colágeno/metabolismo , Infección Hospitalaria/metabolismo , Electroforesis en Gel de Poliacrilamida , Enterococcus faecium/patogenicidad , Ensayo de Inmunoadsorción Enzimática , Expresión Génica , Regulación Bacteriana de la Expresión Génica , Infecciones por Bacterias Grampositivas/metabolismo , Humanos , Glicoproteínas de Membrana/metabolismo , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
12.
J Infect Dis ; 200(7): 1162-5, 2009 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-19702507

RESUMEN

The role that the enterococcal surface protein Esp plays in the capacity of Enterococcus faecium to adhere to uroepithelial cells and the role that it plays in urinary tract infection and peritonitis was investigated in vitro and in vivo, respectively, using Esp-expressing E. faecium (E1162) and its isogenic Esp-deficient mutant (E1162 Delta esp). Esp expression enhanced in vitro binding to bladder and kidney epithelial cells. In mice, higher numbers of E1162 were cultured from kidneys and bladders after the induction of urinary tract infection, compared with E1162 Delta esp numbers. This was accompanied by a higher frequency of bacteremia, higher cytokine levels in kidney tissue, and renal insufficiency. Esp had no effect on the course of E. faecium peritonitis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/toxicidad , Enterococcus faecium/metabolismo , Infecciones por Bacterias Grampositivas/microbiología , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/toxicidad , Infecciones Urinarias/microbiología , Animales , Adhesión Bacteriana , Proteínas Bacterianas/genética , Enterococcus faecium/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Proteínas de la Membrana/genética , Ratones , Unión Proteica
13.
BMC Microbiol ; 9: 19, 2009 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-19178704

RESUMEN

BACKGROUND: Enterococcus faecium has globally emerged as a cause of hospital-acquired infections with high colonization rates in hospitalized patients. The enterococcal surface protein Esp, identified as a potential virulence factor, is specifically linked to nosocomial clonal lineages that are genetically distinct from indigenous E. faecium strains. To investigate whether Esp facilitates bacterial adherence and intestinal colonization of E. faecium, we used human colorectal adenocarcinoma cells (Caco-2 cells) and an experimental colonization model in mice. RESULTS: No differences in adherence to Caco-2 cells were found between an Esp expressing strain of E. faecium (E1162) and its isogenic Esp-deficient mutant (E1162Deltaesp). Mice, kept under ceftriaxone treatment, were inoculated orally with either E1162, E1162Deltaesp or both strains simultaneously. Both E1162 and E1162Deltaesp were able to colonize the murine intestines with high and comparable numbers. No differences were found in the contents of cecum and colon. Both E1162 and E1162Deltaesp were able to translocate to the mesenteric lymph nodes. CONCLUSION: These results suggest that Esp is not essential for Caco-2 cell adherence and intestinal colonization or translocation of E. faecium in mice.


Asunto(s)
Adhesión Bacteriana , Proteínas Bacterianas/metabolismo , Enterococcus faecium/patogenicidad , Infecciones por Bacterias Grampositivas/microbiología , Proteínas de la Membrana/metabolismo , Animales , Proteínas Bacterianas/genética , Traslocación Bacteriana , Células CACO-2 , Enterococcus faecium/genética , Enterococcus faecium/metabolismo , Femenino , Humanos , Intestinos/microbiología , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL
14.
Appl Environ Microbiol ; 75(4): 1201-3, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19088316

RESUMEN

Spores obtained from Bacillus cereus ATCC 14579 and mutant strains lacking each of seven germinant receptor operons were exposed to differentiated Caco-2 cells and monitored for germination. Spores of the gerI and gerL mutants showed a reduced germination response, pointing to a role for these receptors in Caco-2-induced germination.


Asunto(s)
Bacillus cereus/fisiología , Células Epiteliales/microbiología , Intestino Delgado/microbiología , Esporas Bacterianas/crecimiento & desarrollo , Bacillus cereus/genética , Células CACO-2 , Genes Bacterianos , Humanos , Intestino Delgado/citología , Mutación , Esporas Bacterianas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...