Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Bioengineering (Basel) ; 10(12)2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38135999

RESUMEN

(1) Background: The desire to avoid autograft harvesting in implant dentistry has prompted an ever-increasing quest for bioceramic bone substitutes, which stimulate osteogenesis while resorbing in a timely fashion. Consequently, a highly bioactive silicon containing calcium alkali orthophosphate (Si-CAP) material was created, which previously was shown to induce greater bone cell maturation and bone neo-formation than ß-tricalcium phosphate (ß-TCP) in vivo as well as in vitro. Our study tested the hypothesis that the enhanced effect on bone cell function in vitro and in sheep in vivo would lead to more copious bone neoformation in patients following sinus floor augmentation (SFA) employing Si-CAP when compared to ß-TCP. (2) Methods: The effects of Si-CAP on osteogenesis and Si-CAP resorbability were evaluated in biopsies harvested from 38 patients six months after SFA in comparison to ß-TCP employing undecalcified histology, histomorphometry, and immunohistochemical analysis of osteogenic marker expression. (3) Results: Si-CAP as well as ß-TCP supported matrix mineralization and bone formation. Apically furthest away from the original bone tissue, Si-CAP induced significantly higher bone formation, bone-bonding (bone-bioceramic contact), and granule resorption than ß-TCP. This was in conjunction with a higher expression of osteogenic markers. (4) Conclusions: Si-CAP induced higher and more advanced bone formation and resorbability than ß-TCP, while ß-TCP's remarkable osteoconductivity has been widely demonstrated. Hence, Si-CAP constitutes a well-suited bioactive graft choice for SFA in the clinical arena.

2.
NPJ Microgravity ; 9(1): 80, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37803062

RESUMEN

Additive manufacturing of metals - and in particular building with laser-based powder bed fusion - is highly flexible and allows high-resolution features and feedstock savings. Meanwhile, though space stations in low Earth orbit are established, a set of visits to the Moon have been performed, and humankind can send out rovers to explore Venus and Mars, none of these milestone missions is equipped with technology to manufacture functional metallic parts or tools in space. In order to advance space exploration to long-term missions beyond low Earth orbit, it will be crucial to develop and employ technology for in-space manufacturing (ISM) and in-situ resource utilisation (ISRU). To use the advantages of laser-based powder bed fusion in these endeavours, the challenge of powder handling in microgravity must be met. Here we present a device capable of building parts using metallic powders in microgravity. This was proven on several sounding rocket flights, on which occasions Zr-based metallic glass parts produced by additive manufacturing in space were built. The findings of this work demonstrate that building parts using powder feedstock, which is more compact to transport into space than wire, is possible in microgravity environments. This thus significantly advances ISRU and ISM and paves the way for future tests in prolonged microgravity settings.

3.
Front Bioeng Biotechnol ; 11: 1221314, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37397960

RESUMEN

Introduction: Recently, efforts towards the development of patient-specific 3D printed scaffolds for bone tissue engineering from bioactive ceramics have continuously intensified. For reconstruction of segmental defects after subtotal mandibulectomy a suitable tissue engineered bioceramic bone graft needs to be endowed with homogenously distributed osteoblasts in order to mimic the advantageous features of vascularized autologous fibula grafts, which represent the standard of care, contain osteogenic cells and are transplanted with the respective blood vessel. Consequently, inducing vascularization early on is pivotal for bone tissue engineering. The current study explored an advanced bone tissue engineering approach combining an advanced 3D printing technique for bioactive resorbable ceramic scaffolds with a perfusion cell culture technique for pre-colonization with mesenchymal stem cells, and with an intrinsic angiogenesis technique for regenerating critical size, segmental discontinuity defects in vivo applying a rat model. To this end, the effect of differing Si-CAOP (silica containing calcium alkali orthophosphate) scaffold microarchitecture arising from 3D powder bed printing (RP) or the Schwarzwalder Somers (SSM) replica fabrication technique on vascularization and bone regeneration was analyzed in vivo. In 80 rats 6-mm segmental discontinuity defects were created in the left femur. Methods: Embryonic mesenchymal stem cells were cultured on RP and SSM scaffolds for 7d under perfusion to create Si-CAOP grafts with terminally differentiated osteoblasts and mineralizing bone matrix. These scaffolds were implanted into the segmental defects in combination with an arteriovenous bundle (AVB). Native scaffolds without cells or AVB served as controls. After 3 and 6 months, femurs were processed for angio-µCT or hard tissue histology, histomorphometric and immunohistochemical analysis of angiogenic and osteogenic marker expression. Results: At 3 and 6 months, defects reconstructed with RP scaffolds, cells and AVB displayed a statistically significant higher bone area fraction, blood vessel volume%, blood vessel surface/volume, blood vessel thickness, density and linear density than defects treated with the other scaffold configurations. Discussion: Taken together, this study demonstrated that the AVB technique is well suited for inducing adequate vascularization of the tissue engineered scaffold graft in segmental defects after 3 and 6 months, and that our tissue engineering approach employing 3D powder bed printed scaffolds facilitated segmental defect repair.

4.
Materials (Basel) ; 15(15)2022 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-35897571

RESUMEN

The pore geometry of bone scaffolds has a major impact on their cellular response; for this reason, 3D printing is an attractive technology for bone tissue engineering, as it allows for the full control and design of the porosity. Calcium phosphate materials synthesized from natural sources have recently attracted a certain interest because of their similarity to natural bone, and they were found to show better bioactivity than synthetic compounds. Nevertheless, these materials are very challenging to be processed by 3D printing due to technological issues related to their nanometric size. In this work, bone scaffolds with different pore geometries, with a uniform size or with a size gradient, were fabricated by binder jetting 3D printing using a biphasic calcium phosphate (BCP) nanopowder derived from cuttlebones. To do so, the nanopowder was mixed with a glass-ceramic powder with a larger particle size (45-100 µm) in 1:10 weight proportions. Pure AP40mod scaffolds were also printed. The sintered scaffolds were shown to be composed mainly by hydroxyapatite (HA) and wollastonite, with the amount of HA being larger when the nanopowder was added because BCP transforms into HA during sintering at 1150 °C. The addition of bio-derived powder increases the porosity from 60% to 70%, with this indicating that the nanoparticles slow down the glass-ceramic densification. Human mesenchymal stem cells were seeded on the scaffolds to test the bioactivity in vitro. The cells' number and metabolic activity were analyzed after 3, 5 and 10 days of culturing. The cellular behavior was found to be very similar for samples with different pore geometries and compositions. However, while the cell number was constantly increasing, the metabolic activity on the scaffolds with gradient pores and cuttlebone-derived powder decreased over time, which might be a sign of cell differentiation. Generally, all scaffolds promoted fast cell adhesion and proliferation, which were found to penetrate and colonize the 3D porous structure.

5.
PLoS One ; 16(2): e0246511, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33606771

RESUMEN

Frass (fine powdery refuse or fragile perforated wood produced by the activity of boring insects) of larvae of the European house borer (EHB) and of drywood termites was tested as a natural and novel feedstock for 3D-printing of wood-based materials. Small particles produced by the drywood termite Incisitermes marginipennis and the EHB Hylotrupes bajulus during feeding in construction timber, were used. Frass is a powdery material of particularly consistent quality that is essentially biologically processed wood mixed with debris of wood and faeces. The filigree-like particles flow easily permitting the build-up of wood-based structures in a layer wise fashion using the Binder Jetting printing process. The quality of powders produced by different insect species was compared along with the processing steps and properties of the printed parts. Drywood termite frass with a Hausner Ratio HR = 1.1 with ρBulk = 0.67 g/cm3 and ρTap = 0.74 g/cm3 was perfectly suited to deposition of uniformly packed layers in 3D printing. We suggest that a variety of naturally available feedstocks could be used in environmentally responsible approaches to scientific material sciences/additive manufacturing.


Asunto(s)
Impresión Tridimensional , Madera , Animales , Isópteros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...