Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 93(4): 044709, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35489924

RESUMEN

We introduce a Xilinx RF System-on-Chip (RFSoC)-based qubit controller (called the Quantum Instrumentation Control Kit, or QICK for short), which supports the direct synthesis of control pulses with carrier frequencies of up to 6 GHz. The QICK can control multiple qubits or other quantum devices. The QICK consists of a digital board hosting an RFSoC field-programmable gate array, custom firmware, and software and an optional companion custom-designed analog front-end board. We characterize the analog performance of the system as well as its digital latency, important for quantum error correction and feedback protocols. We benchmark the controller by performing standard characterizations of a transmon qubit. We achieve an average gate fidelity of Favg=99.93%. All of the schematics, firmware, and software are open-source.

2.
Rev Sci Instrum ; 91(12): 124705, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33379935

RESUMEN

We present the development of a second generation digital readout system for photon counting microwave kinetic inductance detector (MKID) arrays operating in the optical and near-infrared wavelength bands. Our system retains much of the core signal processing architecture from the first generation system but with a significantly higher bandwidth, enabling the readout of kilopixel MKID arrays. Each set of readout boards is capable of reading out 1024 MKID pixels multiplexed over 2 GHz of bandwidth; two such units can be placed in parallel to read out a full 2048 pixel microwave feedline over a 4 GHz-8 GHz band. As in the first generation readout, our system is capable of identifying, analyzing, and recording photon detection events in real time with a time resolution of order a few microseconds. Here, we describe the hardware and firmware, and present an analysis of the noise properties of the system. We also present a novel algorithm for efficiently suppressing IQ mixer sidebands to below -30 dBc.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...