Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Glycobiology ; 34(5)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38401165

RESUMEN

Glycosaminoglycans are extended linear polysaccharides present on cell surfaces and within the extracellular matrix that play crucial roles in various biological processes. Two prominent glycosaminoglycans, heparan sulfate and chondroitin sulfate, are covalently linked to proteoglycan core proteins through a common tetrasaccharide linker comprising glucuronic acid, galactose, galactose, and xylose moities. This tetrasaccharide linker is meticulously assembled step by step by four Golgi-localized glycosyltransferases. The addition of the fifth sugar moiety, either N-acetylglucosamine or N-acetylgalactosamine, initiates further chain elongation, resulting in the formation of heparan sulfate or chondroitin sulfate, respectively. Despite the fundamental significance of this step in glycosaminoglycan biosynthesis, its regulatory mechanisms have remained elusive. In this study, we detail the expression and purification of the four linker-synthesizing glycosyltransferases and their utilization in the production of fluorescent peptides carrying the native tetrasaccharide linker. We generated five tetrasaccharide peptides, mimicking the core proteins of either heparan sulfate or chondroitin sulfate proteoglycans. These peptides were readily accepted as substrates by the EXTL3 enzyme, which adds an N-acetylglucosamine moiety, thereby initiating heparan sulfate biosynthesis. Importantly, EXTL3 showed a preference towards peptides mimicking the core proteins of heparan sulfate proteoglycans over the ones from chondroitin sulfate proteoglycans. This suggests that EXTL3 could play a role in the decision-making step during glycosaminoglycan biosynthesis. The innovative strategy for chemo-enzymatic synthesis of fluorescent-labeled linker-peptides promises to be instrumental in advancing future investigations into the initial steps and the divergent step of glycosaminoglycan biosynthesis.


Asunto(s)
Acetilglucosamina , Sulfatos de Condroitina , Galactosa , Glicosaminoglicanos/metabolismo , Heparitina Sulfato/metabolismo , Proteoglicanos Tipo Condroitín Sulfato , Oligosacáridos , Péptidos , Glicosiltransferasas
2.
Nat Commun ; 13(1): 7110, 2022 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-36402845

RESUMEN

Heparan sulfates are complex polysaccharides that mediate the interaction with a broad range of protein ligands at the cell surface. A key step in heparan sulfate biosynthesis is catalyzed by the bi-functional glycosyltransferases EXT1 and EXT2, which generate the glycan backbone consisting of repeating N-acetylglucosamine and glucuronic acid units. The molecular mechanism of heparan sulfate chain polymerization remains, however, unknown. Here, we present the cryo-electron microscopy structure of human EXT1-EXT2, which reveals the formation of a tightly packed hetero-dimeric complex harboring four glycosyltransferase domains. A combination of in vitro and in cellulo mutational studies is used to dissect the functional role of the four catalytic sites. While EXT1 can catalyze both glycosyltransferase reactions, our results indicate that EXT2 might only have N-acetylglucosamine transferase activity. Our findings provide mechanistic insight into heparan sulfate chain elongation as a nonprocessive process and lay the foundation for future studies on EXT1-EXT2 function in health and disease.


Asunto(s)
Heparitina Sulfato , N-Acetilglucosaminiltransferasas , Humanos , N-Acetilglucosaminiltransferasas/metabolismo , Microscopía por Crioelectrón , Heparitina Sulfato/metabolismo , Proteínas/metabolismo , Nucleotidiltransferasas , Glicosiltransferasas/metabolismo
3.
Nat Commun ; 12(1): 384, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33452263

RESUMEN

Phosphorus is an essential nutrient taken up by organisms in the form of inorganic phosphate (Pi). Eukaryotes have evolved sophisticated Pi sensing and signaling cascades, enabling them to stably maintain cellular Pi concentrations. Pi homeostasis is regulated by inositol pyrophosphate signaling molecules (PP-InsPs), which are sensed by SPX domain-containing proteins. In plants, PP-InsP-bound SPX receptors inactivate Myb coiled-coil (MYB-CC) Pi starvation response transcription factors (PHRs) by an unknown mechanism. Here we report that a InsP8-SPX complex targets the plant-unique CC domain of PHRs. Crystal structures of the CC domain reveal an unusual four-stranded anti-parallel arrangement. Interface mutations in the CC domain yield monomeric PHR1, which is no longer able to bind DNA with high affinity. Mutation of conserved basic residues located at the surface of the CC domain disrupt interaction with the SPX receptor in vitro and in planta, resulting in constitutive Pi starvation responses. Together, our findings suggest that InsP8 regulates plant Pi homeostasis by controlling the oligomeric state and hence the promoter binding capability of PHRs via their SPX receptors.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Difosfatos/metabolismo , Regulación de la Expresión Génica de las Plantas , Fosfatos de Inositol/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Secuencias de Aminoácidos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/aislamiento & purificación , Proteínas de Arabidopsis/ultraestructura , Cristalografía por Rayos X , Mutación , Proteínas Nucleares/genética , Unión Proteica/genética , Dominios Proteicos/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , Transducción de Señal/genética , Factores de Transcripción/genética , Factores de Transcripción/aislamiento & purificación , Factores de Transcripción/ultraestructura
4.
Glycobiology ; 31(12): 1604-1615, 2021 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-34974622

RESUMEN

The oligosaccharyltransferase (OST) is the central enzyme in the N-glycosylation pathway. It transfers a defined oligosaccharide from a lipid-linker onto the asparagine side chain of proteins. The yeast OST consists of eight subunits and exists in two catalytically distinct isoforms that differ in one subunit, Ost3p or Ost6p. The cryo-electron microscopy structure of the Ost6p containing complex was found to be highly similar to the Ost3p containing OST. OST enzymes with altered Ost3p/Ost6p subunits were generated and functionally analyzed. The three C-terminal transmembrane helices were responsible for the higher turnover-rate of the Ost3p vs. the Ost6p containing enzyme in vitro and the more severe hypoglycosylation in Ost3p lacking strains in vivo. Glycosylation of specific OST target sites required the N-terminal thioredoxin domain of Ost3p or Ost6p. This Ost3p/Ost6p dependence was glycosylation site but not protein specific. We concluded that the Ost3p/Ost6p subunits modulate the catalytic activity of OST and provide additional specificity for OST substrate recognition.


Asunto(s)
Hexosiltransferasas , Proteínas de Saccharomyces cerevisiae , Microscopía por Crioelectrón , Hexosiltransferasas/metabolismo , Proteínas de la Membrana , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Molecules ; 25(18)2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32937952

RESUMEN

Glycosylation is a common and widespread post-translational modification that affects a large majority of proteins. Of these, a small minority, about 20, are specifically modified by the addition of heparan sulfate, a linear polysaccharide from the glycosaminoglycan family. The resulting molecules, heparan sulfate proteoglycans, nevertheless play a fundamental role in most biological functions by interacting with a myriad of proteins. This large functional repertoire stems from the ubiquitous presence of these molecules within the tissue and a tremendous structural variety of the heparan sulfate chains, generated through both biosynthesis and post synthesis mechanisms. The present review focusses on how proteoglycans are "gagosylated" and acquire structural complexity through the concerted action of Golgi-localized biosynthesis enzymes and extracellular modifying enzymes. It examines, in particular, the possibility that these enzymes form complexes of different modes of organization, leading to the synthesis of various oligosaccharide sequences.


Asunto(s)
Aparato de Golgi/metabolismo , Proteoglicanos de Heparán Sulfato/biosíntesis , Heparitina Sulfato/metabolismo , Animales , Membrana Celular/metabolismo , Matriz Extracelular/metabolismo , Glicosaminoglicanos/metabolismo , Glicosilación , Proteoglicanos de Heparán Sulfato/química , Humanos , Mutación , Oligosacáridos/química , Biosíntesis de Proteínas , Dominios Proteicos , Procesamiento Proteico-Postraduccional
6.
Science ; 359(6375): 545-550, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29301962

RESUMEN

Oligosaccharyltransferase (OST) is an essential membrane protein complex in the endoplasmic reticulum, where it transfers an oligosaccharide from a dolichol-pyrophosphate-activated donor to glycosylation sites of secretory proteins. Here we describe the atomic structure of yeast OST determined by cryo-electron microscopy, revealing a conserved subunit arrangement. The active site of the catalytic STT3 subunit points away from the center of the complex, allowing unhindered access to substrates. The dolichol-pyrophosphate moiety binds to a lipid-exposed groove of STT3, whereas two noncatalytic subunits and an ordered N-glycan form a membrane-proximal pocket for the oligosaccharide. The acceptor polypeptide site faces an oxidoreductase domain in stand-alone OST complexes or is immediately adjacent to the translocon, suggesting how eukaryotic OSTs efficiently glycosylate a large number of polypeptides before their folding.


Asunto(s)
Hexosiltransferasas/química , Proteínas de la Membrana/química , Complejos Multienzimáticos/química , Proteínas de Saccharomyces cerevisiae/química , Dominio Catalítico , Secuencia Conservada , Microscopía por Crioelectrón , Glicosilación , Hexosiltransferasas/ultraestructura , Proteínas de la Membrana/ultraestructura , Complejos Multienzimáticos/ultraestructura , Oxidación-Reducción , Proteínas de Saccharomyces cerevisiae/ultraestructura , Especificidad por Sustrato
7.
Protein Sci ; 26(2): 365-374, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27774698

RESUMEN

Obtaining well-ordered crystals remains a significant challenge in protein X-ray crystallography. Carrier-driven crystallization can facilitate crystal formation and structure solution of difficult target proteins. We obtained crystals of the small and highly flexible SPX domain from the yeast vacuolar transporter chaperone 4 (Vtc4) when fused to a C-terminal, non-cleavable macro tag derived from human histone macroH2A1.1. Initial crystals diffracted to 3.3 Å resolution. Reductive protein methylation of the fusion protein yielded a new crystal form diffracting to 2.1 Å. The structures were solved by molecular replacement, using isolated macro domain structures as search models. Our findings suggest that macro domain tags can be employed in recombinant protein expression in E. coli, and in carrier-driven crystallization.


Asunto(s)
Histonas/química , Chaperonas Moleculares/química , Proteínas Recombinantes de Fusión/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Cristalografía por Rayos X , Histonas/genética , Humanos , Chaperonas Moleculares/genética , Dominios Proteicos , Proteínas Recombinantes de Fusión/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
8.
Science ; 352(6288): 986-90, 2016 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-27080106

RESUMEN

Phosphorus is a macronutrient taken up by cells as inorganic phosphate (P(i)). How cells sense cellular P(i) levels is poorly characterized. Here, we report that SPX domains--which are found in eukaryotic phosphate transporters, signaling proteins, and inorganic polyphosphate polymerases--provide a basic binding surface for inositol polyphosphate signaling molecules (InsPs), the concentrations of which change in response to P(i) availability. Substitutions of critical binding surface residues impair InsP binding in vitro, inorganic polyphosphate synthesis in yeast, and P(i) transport in Arabidopsis In plants, InsPs trigger the association of SPX proteins with transcription factors to regulate P(i) starvation responses. We propose that InsPs communicate cytosolic P(i) levels to SPX domains and enable them to interact with a multitude of proteins to regulate P(i) uptake, transport, and storage in fungi, plants, and animals.


Asunto(s)
Homeostasis , Inositol/metabolismo , Proteínas de Transporte de Fosfato/química , Fósforo/metabolismo , Polifosfatos/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/química , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Cristalografía por Rayos X , Citosol/metabolismo , Humanos , Proteínas de Transporte de Fosfato/genética , Estructura Secundaria de Proteína/genética , Estructura Terciaria de Proteína/genética , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/química , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética
9.
J Neural Transm (Vienna) ; 120(8): 1171-8, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23653222

RESUMEN

Oxidative stress has been suggested to play an important role in the pathogenesis of various neurodegenerative diseases including Alzheimer's disease (AD). Hydrogen peroxide (H2O2), one of the main reactive oxygen species, is converted into the highly toxic ·OH radical in the presence of redox-active transition metals, which then oxidises nucleic acids, lipids and proteins, leading to neurodegeneration and cell death. There is an urgent need to gain more knowledge about relevant therapeutic targets to combat oxidative stress and it neurotoxic effects, and how this knowledge can be utilized to develop novel neuroprotective therapies for AD. One way to identify new mechanisms combating oxidative stress was via the creation of H2O2-resistant cell lines and identification of the mechanisms responsible for their resistance. However, in most cases catalase overexpression or increased glutathione content was identified as the primary mode of H2O2 resistance in these cell lines. In this study, we have generated six different resistant neuronal cell lines or populations (from the same original murine Neuro2a neuroblastoma line) by exposing cells to increasing concentrations of H2O2 and performing continuous selection for survivors over a period of several months, which appear to have acquired H2O2 resistance based on other, novel mechanisms. These six populations showed a significant, but differential resistance against H2O2 when compared with the parental cell line. Using combinations of catalase-, glutathione synthesis- and glutathione peroxidase-inhibitors it was shown that the increased resistance of Neuro2a-HR cells is not solely based on an increased activity of catalase or the glutathione system, suggesting that their resistance might be based on yet unknown, novel defence mechanisms.


Asunto(s)
Supervivencia Celular/efectos de los fármacos , Resistencia a Antineoplásicos , Marcación de Gen/métodos , Peróxido de Hidrógeno/farmacología , Neuroblastoma/genética , Animales , Supervivencia Celular/fisiología , Inhibidores Enzimáticos/farmacología , Ratones , Neuroblastoma/enzimología , Células Tumorales Cultivadas
10.
Anal Bioanal Chem ; 403(9): 2577-81, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22580513

RESUMEN

The determination of methylglyoxal (MG) concentrations in vivo is gaining increasing importance as high levels of MG are linked to various health impairments including complications of diabetes. In order to standardize the measurements of MG in body fluids, it is necessary to precisely determine the concentration of MG stock solutions used as analytical standards. The "gold standard" method for the determination of MG concentration in the millimolar range is an enzyme-catalyzed endpoint assay based on the glyoxalase I catalyzed formation of S-lactoylglutathione. However, as this assay used purified glyoxalase I enzyme, it is quite expensive. Another method uses a derivation reaction with 2,4-dinitrophenylhydrazine, but this substance is explosive and needs special handling and storage. In addition, precipitation of the product methylglyoxal-bis-2,4-dinitrophenylhydrozone during the reaction limits the reliability of this method. In this study, we have evaluated a new method of MG determination based on the previously published fast reaction between MG and N-acetyl-L-cysteine at room temperature which yields an easily detectable condensation product, N-α-acetyl-S-(1-hydroxy-2-oxo-prop-1-yl)cysteine. When comparing these three different assays for the measurement of MG concentrations, we find that the N-acetyl-L-cysteine assay is the most favorable, providing an economical and robust assay without the need for the use of hazardous or expensive reagents.


Asunto(s)
Acetilcisteína/química , Piruvaldehído/análisis , Espectrofotometría/métodos , Pruebas de Enzimas , Lactoilglutatión Liasa/metabolismo , Fenilhidrazinas/química , Saccharomyces cerevisiae/enzimología , Sensibilidad y Especificidad , Espectrofotometría/economía , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA