Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Cancer Metab ; 12(1): 11, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594734

RESUMEN

BACKGROUND: Diffuse midline gliomas (DMG), including diffuse intrinsic pontine gliomas (DIPGs), are a fatal form of brain cancer. These tumors often carry a driver mutation on histone H3 converting lysine 27 to methionine (H3K27M). DMG-H3K27M are characterized by altered metabolism and resistance to standard of care radiation (RT) but how the H3K27M mediates the metabolic response to radiation and consequent treatment resistance is uncertain. METHODS: We performed metabolomics on irradiated and untreated H3K27M isogenic DMG cell lines and observed an H3K27M-specific enrichment for purine synthesis pathways. We profiled the expression of purine synthesis enzymes in publicly available patient data and our models, quantified purine synthesis using stable isotope tracing, and characterized the in vitro and in vivo response to de novo and salvage purine synthesis inhibition in combination with RT. RESULTS: DMG-H3K27M cells activate purine metabolism in an H3K27M-specific fashion. In the absence of genotoxic treatment, H3K27M-expressing cells have higher relative activity of de novo synthesis and apparent lower activity of purine salvage demonstrated via stable isotope tracing of key metabolites in purine synthesis and by lower expression of hypoxanthine-guanine phosphoribosyltransferase (HGPRT), the rate-limiting enzyme of purine salvage into IMP and GMP. Inhibition of de novo guanylate synthesis radiosensitized DMG-H3K27M cells in vitro and in vivo. Irradiated H3K27M cells upregulated HGPRT expression and hypoxanthine-derived guanylate salvage but maintained high levels of guanine-derived salvage. Exogenous guanine supplementation decreased radiosensitization in cells treated with combination RT and de novo purine synthesis inhibition. Silencing HGPRT combined with RT markedly suppressed DMG-H3K27M tumor growth in vivo. CONCLUSIONS: Our results indicate that DMG-H3K27M cells rely on highly active purine synthesis, both from the de novo and salvage synthesis pathways. However, highly active salvage of free purine bases into mature guanylates can bypass inhibition of the de novo synthetic pathway. We conclude that inhibiting purine salvage may be a promising strategy to overcome treatment resistance in DMG-H3K27M tumors.

3.
Cancer Discov ; 14(1): 158-175, 2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-37902550

RESUMEN

How cell metabolism regulates DNA repair is incompletely understood. Here, we define a GTP-mediated signaling cascade that links metabolism to DNA repair and has significant therapeutic implications. GTP, but not other nucleotides, regulates the activity of Rac1, a guanine nucleotide-binding protein, which promotes the dephosphorylation of serine 323 on Abl-interactor 1 (Abi-1) by protein phosphatase 5 (PP5). Dephosphorylated Abi-1, a protein previously not known to activate DNA repair, promotes nonhomologous end joining. In patients and mouse models of glioblastoma, Rac1 and dephosphorylated Abi-1 mediate DNA repair and resistance to standard-of-care genotoxic treatments. The GTP-Rac1-PP5-Abi-1 signaling axis is not limited to brain cancer, as GTP supplementation promotes DNA repair and Abi-1-S323 dephosphorylation in nonmalignant cells and protects mouse tissues from genotoxic insult. This unexpected ability of GTP to regulate DNA repair independently of deoxynucleotide pools has important implications for normal physiology and cancer treatment. SIGNIFICANCE: A newly described GTP-dependent signaling axis is an unexpected link between nucleotide metabolism and DNA repair. Disrupting this pathway can overcome cancer resistance to genotoxic therapy while augmenting it can mitigate genotoxic injury of normal tissues. This article is featured in Selected Articles from This Issue, p. 5.


Asunto(s)
Glioblastoma , Transducción de Señal , Humanos , Ratones , Animales , Transducción de Señal/genética , Reparación del ADN , Daño del ADN , Guanosina Trifosfato
4.
medRxiv ; 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37961582

RESUMEN

The brain avidly consumes glucose to fuel neurophysiology. Cancers of the brain, such as glioblastoma (GBM), lose aspects of normal biology and gain the ability to proliferate and invade healthy tissue. How brain cancers rewire glucose utilization to fuel these processes is poorly understood. Here we perform infusions of 13 C-labeled glucose into patients and mice with brain cancer to define the metabolic fates of glucose-derived carbon in tumor and cortex. By combining these measurements with quantitative metabolic flux analysis, we find that human cortex funnels glucose-derived carbons towards physiologic processes including TCA cycle oxidation and neurotransmitter synthesis. In contrast, brain cancers downregulate these physiologic processes, scavenge alternative carbon sources from the environment, and instead use glucose-derived carbons to produce molecules needed for proliferation and invasion. Targeting this metabolic rewiring in mice through dietary modulation selectively alters GBM metabolism and slows tumor growth. Significance: This study is the first to directly measure biosynthetic flux in both glioma and cortical tissue in human brain cancer patients. Brain tumors rewire glucose carbon utilization away from oxidation and neurotransmitter production towards biosynthesis to fuel growth. Blocking these metabolic adaptations with dietary interventions slows brain cancer growth with minimal effects on cortical metabolism.

5.
Res Sq ; 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37790517

RESUMEN

Background: Diffuse midline gliomas (DMG), including diffuse intrinsic pontine gliomas (DIPGs), are a fatal form of brain cancer. These tumors often carry a driver mutation on histone H3 converting lysine 27 to methionine (H3K27M). DMG-H3K27M are characterized by altered metabolism and resistance to standard of care radiation (RT), but how the H3K27M mediates the metabolic response to radiation and consequent treatment resistance is uncertain. Methods: We performed metabolomics on irradiated and untreated H3K27M isogenic DMG cell lines and observed an H3K27M-specific enrichment for purine synthesis pathways. We profiled the expression of purine synthesis enzymes in publicly available patient data and in our models, quantified purine synthetic flux using stable isotope tracing, and characterized the in vitro and in vivo response to de novo and salvage purine synthesis inhibition in combination with RT. Results: DMG-H3K27M cells activate purine metabolism in an H3K27M-specific fashion. In the absence of genotoxic treatment, H3K27M-expressing cells have higher relative activity of de novosynthesis and lower activity of purine salvage due to decreased expression of the purine salvage enzymes. Inhibition of de novo synthesis radiosensitized DMG-H3K27M cells in vitro and in vivo. Irradiated H3K27M cells adaptively upregulate purine salvage enzyme expression and pathway activity. Silencing the rate limiting enzyme in purine salvage, hypoxanthine guanine phosphoribosyl transferase (HGPRT) when combined with radiation markedly suppressed DMG-H3K27M tumor growth in vivo. Conclusions: H3K27M expressing cells rely on de novo purine synthesis but adaptively upregulate purine salvage in response to RT. Inhibiting purine salvage may help overcome treatment resistance in DMG-H3K27M tumors.

6.
Cancer Res Commun ; 2(7): 679-693, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36381235

RESUMEN

Patients with radioresistant breast cancers, including a large percentage of women with triple negative breast cancer (TNBC), demonstrate limited response to radiation (RT) and increased locoregional recurrence; thus, strategies to increase the efficacy of RT in TNBC are critically needed. We demonstrate that pan Bcl-2 family inhibition (ABT-263, rER: 1.52-1.56) or Bcl-xL specific inhibition (WEHI-539, A-1331852; rER: 1.31-2.00) radiosensitized wild-type PIK3CA/PTEN TNBC (MDA-MB-231, CAL-120) but failed to radiosensitize mutant PIK3CA/PTEN TNBC (rER: 0.90 - 1.07; MDA-MB-468, CAL-51, SUM-159). Specific inhibition of Bcl-2 or Mcl-1 did not induce radiosensitization, regardless of PIK3CA/PTEN status (rER: 0.95 - 1.07). In wild-type PIK3CA/PTEN TNBC, pan Bcl-2 family inhibition or Bcl-xL specific inhibition with RT led to increased levels of apoptosis (p < 0.001) and an increase in cleaved PARP and cleaved caspase 3. CRISPR-mediated PTEN knockout in wild-type PIK3CA/PTEN MDA-MB-231 and CAL-120 cells induced expression of pAKT/Akt and Mcl-1 and abolished Bcl-xL inhibitor-mediated radiosensitization (rER: 0.94 - 1.07). Similarly, Mcl-1 overexpression abolished radiosensitization in MDA-MB-231 and CAL-120 cells (rER: 1.02 - 1.04) but transient MCL1 knockdown in CAL-51 cells promoted Bcl-xL-inhibitor mediated radiosensitization (rER 2.35 ± 0.05). In vivo, ABT-263 or A-1331852 in combination with RT decreased tumor growth and increased tumor tripling time (p < 0.0001) in PIK3CA/PTEN wild-type TNBC cell line and patient-derived xenografts. Collectively, this study provides the preclinical rationale for early phase clinical trials testing the safety, tolerability, and efficacy of Bcl-xL inhibition and RT in women with wild-type PIK3CA/PTEN wild-type TNBC at high risk for recurrence.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Proteína bcl-X/genética , Línea Celular Tumoral , Recurrencia Local de Neoplasia , Proteínas Proto-Oncogénicas c-bcl-2/genética , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfohidrolasa PTEN/genética
7.
Br J Cancer ; 127(5): 927-936, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35618789

RESUMEN

PURPOSE: Radiation therapy (RT) and hormone receptor (HR) inhibition are used for the treatment of HR-positive breast cancers; however, little is known about the interaction of the androgen receptor (AR) and estrogen receptor (ER) in response to RT in AR-positive, ER-positive (AR+/ER+) breast cancers. Here we assessed radiosensitisation of AR+/ER+ cell lines using pharmacologic or genetic inhibition/degradation of AR and/or ER. METHODS: Radiosensitisation was assessed with AR antagonists (enzalutamide, apalutamide, darolutamide, seviteronel, ARD-61), ER antagonists (tamoxifen, fulvestrant) or using knockout of AR. RESULTS: Treatment with AR antagonists or ER antagonists in combination with RT did not result in radiosensitisation changes (radiation enhancement ratios [rER]: 0.76-1.21). Fulvestrant treatment provided significant radiosensitisation of CAMA-1 and BT-474 cells (rER: 1.06-2.0) but not ZR-75-1 cells (rER: 0.9-1.11). Combining tamoxifen with enzalutamide did not alter radiosensitivity using a 1 h or 1-week pretreatment (rER: 0.95-1.14). Radiosensitivity was unchanged in AR knockout compared to Cas9 cells (rER: 1.07 ± 0.11), and no additional radiosensitisation was achieved with tamoxifen or fulvestrant compared to Cas9 cells (rER: 0.84-1.19). CONCLUSION: While radiosensitising in AR + TNBC, AR inhibition does not modulate radiation sensitivity in AR+/ER+ breast cancer. The efficacy of ER antagonists in combination with RT may also be dependent on AR expression.


Asunto(s)
Neoplasias de la Mama , Tolerancia a Radiación , Receptores Androgénicos , Receptores de Estrógenos , Antagonistas de Receptores Androgénicos/farmacología , Antagonistas de Receptores Androgénicos/uso terapéutico , Andrógenos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/radioterapia , Línea Celular Tumoral , Antagonistas del Receptor de Estrógeno/uso terapéutico , Femenino , Fulvestrant/uso terapéutico , Humanos , Naftalenos , Piperidinas , Pirrolidinas , Tolerancia a Radiación/efectos de los fármacos , Tolerancia a Radiación/genética , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico , Tiazoles , Triazoles
9.
NPJ Breast Cancer ; 8(1): 31, 2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35273179

RESUMEN

Endocrine therapy (ET) is an effective first-line therapy for women with estrogen receptor-positive (ER + ) breast cancers. While both ionizing radiation (RT) and ET are used for the treatment of women with ER+ breast cancer, the most effective sequencing of therapy and the effect of ET on tumor radiosensitization remains unclear. Here we sought to understand the effects of inhibiting estrogen receptor (ER) signaling in combination with RT in multiple preclinical ER+ breast cancer models. Clonogenic survival assays were performed using variable pre- and post-treatment conditions to assess radiosensitization with estradiol, estrogen deprivation, tamoxifen, fulvestrant, or AZD9496 in ER+ breast cancer cell lines. Estrogen stimulation was radioprotective (radiation enhancement ratios [rER]: 0.51-0.82). Conversely, when given one hour prior to RT, ER inhibition or estrogen depletion radiosensitized ER+ MCF-7 and T47D cells (tamoxifen rER: 1.50-1.60, fulvestrant rER: 1.76-2.81, AZD9496 rER: 1.33-1.48, estrogen depletion rER: 1.47-1.51). Combination treatment resulted in an increase in double-strand DNA (dsDNA) breaks as a result of inhibition of non-homologous end joining-mediated dsDNA break repair with no effect on homologous recombination. Treatment with tamoxifen or fulvestrant in combination with RT also increased the number of senescent cells but did not affect apoptosis or cell cycle distribution. Using an MCF-7 xenograft model, concurrent treatment with tamoxifen and RT was synergistic and resulted in a significant decrease in tumor volume and a delay in time to tumor doubling without significant toxicity. These findings provide preclinical evidence that concurrent treatment with ET and RT may be an effective radiosensitization strategy.

10.
JCI Insight ; 7(3)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-34932500

RESUMEN

Standard radiation therapy (RT) does not reliably provide locoregional control for women with multinode-positive breast cancer and triple-negative breast cancer (TNBC). We hypothesized that CDK4/6 inhibition (CDK4/6i) would increase the radiosensitivity not only of estrogen receptor-positive (ER+) cells, but also of TNBC that expresses retinoblastoma (RB) protein. We found that CDK4/6i radiosensitized RB WT TNBC (n = 4, radiation enhancement ratio [rER]: 1.49-2.22) but failed to radiosensitize RB-null TNBC (n = 3, rER: 0.84-1.00). RB expression predicted response to CDK4/6i + RT (R2 = 0.84), and radiosensitization was lost in ER+/TNBC cells (rER: 0.88-1.13) after RB1 knockdown in isogenic and nonisogenic models. CDK4/6i suppressed homologous recombination (HR) in RB WT cells but not in RB-null cells or isogenic models of RB1 loss; HR competency was rescued with RB reexpression. Radiosensitization was independent of nonhomologous end joining and the known effects of CDK4/6i on cell cycle arrest. Mechanistically, RB and RAD51 interact in vitro to promote HR repair. CDK4/6i produced RB-dependent radiosensitization in TNBC xenografts but not in isogenic RB1-null xenografts. Our data provide the preclinical rationale for a clinical trial expanding the use of CDK4/6i + RT to difficult-to-control RB-intact breast cancers (including TNBC) and nominate RB status as a predictive biomarker of therapeutic efficacy.


Asunto(s)
Puntos de Control del Ciclo Celular/genética , Quinasa 4 Dependiente de la Ciclina/genética , Quinasa 6 Dependiente de la Ciclina/genética , ADN de Neoplasias/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Mamarias Experimentales , Neoplasias de la Mama Triple Negativas/radioterapia , Animales , Biomarcadores de Tumor/biosíntesis , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Quinasa 4 Dependiente de la Ciclina/biosíntesis , Quinasa 6 Dependiente de la Ciclina/biosíntesis , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones SCID , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Sci Transl Med ; 13(615): eabf7860, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34644147

RESUMEN

High-grade gliomas with arginine or valine substitutions of the histone H3.3 glycine-34 residue (H3.3G34R/V) carry a dismal prognosis, and current treatments, including radiotherapy and chemotherapy, are not curative. Because H3.3G34R/V mutations reprogram epigenetic modifications, we undertook a comprehensive epigenetic approach using ChIP sequencing and ChromHMM computational analysis to define therapeutic dependencies in H3.3G34R/V gliomas. Our analyses revealed a convergence of epigenetic alterations, including (i) activating epigenetic modifications on histone H3 lysine (K) residues such as H3K36 trimethylation (H3K36me3), H3K27 acetylation (H3K27ac), and H3K4 trimethylation (H3K4me3); (ii) DNA promoter hypomethylation; and (iii) redistribution of repressive histone H3K27 trimethylation (H3K27me3) to intergenic regions at the leukemia inhibitory factor (LIF) locus to drive increased LIF abundance and secretion by H3.3G34R/V cells. LIF activated signal transducer and activator of transcription 3 (STAT3) signaling in an autocrine/paracrine manner to promote survival of H3.3G34R/V glioma cells. Moreover, immunohistochemistry and single-cell RNA sequencing from H3.3G34R/V patient tumors revealed high STAT3 protein and RNA expression, respectively, in tumor cells with both inter- and intratumor heterogeneity. We targeted STAT3 using a blood-brain barrier­penetrable small-molecule inhibitor, WP1066, currently in clinical trials for adult gliomas. WP1066 treatment resulted in H3.3G34R/V tumor cell toxicity in vitro and tumor suppression in preclinical mouse models established with KNS42 cells, SJ-HGGx42-c cells, or in utero electroporation techniques. Our studies identify the LIF/STAT3 pathway as a key epigenetically driven and druggable vulnerability in H3.3G34R/V gliomas. This finding could inform development of targeted, combination therapies for these lethal brain tumors.


Asunto(s)
Neoplasias Encefálicas , Glioma , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Epigénesis Genética , Glioma/genética , Glicina , Histonas/metabolismo , Humanos , Ratones
12.
Clin Cancer Res ; 26(24): 6568-6580, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-32967938

RESUMEN

PURPOSE: Cyclin-dependent kinase 4/6 (CDK4/6) inhibitors have improved progression-free survival for metastatic, estrogen receptor-positive (ER+) breast cancers, but their role in the nonmetastatic setting remains unclear. We sought to understand the effects of CDK4/6 inhibition (CDK4/6i) and radiotherapy in multiple preclinical breast cancer models. EXPERIMENTAL DESIGN: Transcriptomic and proteomic analyses were used to identify significantly altered pathways after CDK4/6i. Clonogenic assays were used to quantify the radiotherapy enhancement ratio (rER). DNA damage was quantified using γH2AX staining and the neutral comet assay. DNA repair was assessed using RAD51 foci formation and nonhomologous end joining (NHEJ) reporter assays. Orthotopic xenografts were used to assess the efficacy of combination therapy. RESULTS: Palbociclib significantly radiosensitized multiple ER+ cell lines at low nanomolar, sub IC50 concentrations (rER: 1.21-1.52) and led to a decrease in the surviving fraction of cells at 2 Gy (P < 0.001). Similar results were observed in ribociclib-treated (rER: 1.08-1.68) and abemaciclib-treated (rER: 1.19-2.05) cells. Combination treatment decreased RAD51 foci formation (P < 0.001), leading to a suppression of homologous recombination activity, but did not affect NHEJ efficiency (P > 0.05). Immortalized breast epithelial cells and cells with acquired resistance to CDK4/6i did not demonstrate radiosensitization (rER: 0.94-1.11) or changes in RAD51 foci. In xenograft models, concurrent palbociclib and radiotherapy led to a significant decrease in tumor growth. CONCLUSIONS: These studies provide preclinical rationale to test CDK4/6i and radiotherapy in women with locally advanced ER+ breast cancer at high risk for locoregional recurrence.


Asunto(s)
Neoplasias de la Mama/radioterapia , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Tolerancia a Radiación/efectos de los fármacos , Fármacos Sensibilizantes a Radiaciones/farmacología , Receptores de Estrógenos/metabolismo , Animales , Apoptosis , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proliferación Celular , Quimioradioterapia , Femenino , Humanos , Ratones , Ratones SCID , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Mol Cancer Ther ; 19(10): 2163-2174, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32796101

RESUMEN

New approaches are needed to overcome intrinsic therapy resistance in glioblastoma (GBM). Because GBMs exhibit sexual dimorphism and are reported to express steroid hormone receptors, we reasoned that signaling through the androgen receptor (AR) could mediate therapy resistance in GBM, much as it does in AR-positive prostate and breast cancers. We found that nearly half of GBM cell lines, patient-derived xenografts (PDX), and human tumors expressed AR at the transcript and protein level-with expression levels overlapping those of primary prostate cancer. Analysis of gene expression datasets also revealed that AR expression is higher in GBM patient samples than normal brain tissue. Multiple clinical-grade antiandrogens slowed the growth of and radiosensitized AR-positive GBM cell lines and PDXs in vitro and in vivo Antiandrogens blocked the ability of AR-positive GBM PDXs to engage adaptive transcriptional programs following radiation and slowed the repair of radiation-induced DNA damage. These results suggest that combining blood-brain barrier permeable antiandrogens with radiation may have promise for patients with AR-positive GBMs.


Asunto(s)
Antagonistas de Andrógenos/uso terapéutico , Glioblastoma/tratamiento farmacológico , Receptores Androgénicos/metabolismo , Antagonistas de Andrógenos/farmacología , Animales , Femenino , Humanos , Ratones , Ratones SCID
14.
Nat Commun ; 11(1): 3811, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32732914

RESUMEN

Intratumoral genomic heterogeneity in glioblastoma (GBM) is a barrier to overcoming therapy resistance. Treatments that are effective independent of genotype are urgently needed. By correlating intracellular metabolite levels with radiation resistance across dozens of genomically-distinct models of GBM, we find that purine metabolites, especially guanylates, strongly correlate with radiation resistance. Inhibiting GTP synthesis radiosensitizes GBM cells and patient-derived neurospheres by impairing DNA repair. Likewise, administration of exogenous purine nucleosides protects sensitive GBM models from radiation by promoting DNA repair. Neither modulating pyrimidine metabolism nor purine salvage has similar effects. An FDA-approved inhibitor of GTP synthesis potentiates the effects of radiation in flank and orthotopic patient-derived xenograft models of GBM. High expression of the rate-limiting enzyme of de novo GTP synthesis is associated with shorter survival in GBM patients. These findings indicate that inhibiting purine synthesis may be a promising strategy to overcome therapy resistance in this genomically heterogeneous disease.


Asunto(s)
Neoplasias Encefálicas/radioterapia , Reparación del ADN/genética , Glioblastoma/radioterapia , Guanosina Monofosfato/metabolismo , Tolerancia a Radiación/genética , Animales , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Femenino , Glioblastoma/genética , Humanos , Masculino , Ratones , Ratones Noqueados , Ratones SCID , Nucleósidos de Purina/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Int J Radiat Oncol Biol Phys ; 108(3): 686-696, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32434041

RESUMEN

PURPOSE: Unmet clinical needs in breast cancer (BC) management include the identification of patients at high risk of local failure despite adjuvant radiation and an understanding of the biology of these recurrences. We previously reported a radiation response signature and here extend those studies to identify a signature predictive of recurrence timing (before or after 3 years). METHODS AND MATERIALS: Two independent patient cohorts were used. The training cohort included 119 patients with in-breast tumor recurrence (343 total), and the validation testing cohort had 16 patients with recurrences (112 total). All patients received radiation treatment after breast-conserving surgery. Initial feature selection used Spearman rank correlation, and a linear model was trained and locked before testing and validation. Cox regression was used for univariate and multivariable analyses (UVA and MVA, respectively). Biologically related concepts were identified using gene set enrichment analysis. RESULTS: Spearman correlation identified 485 genes whose expression was significantly associated with recurrence time (early vs late). Feature reduction further refined the list to 41 genes retained within the signature. In training, the correlation of score to recurrence time was 0.85 (P value < 1.3 × 10-31) with an area under the curve (AUC) of 0.91. Application of this early versus late signature to an independent BC testing and validation set accurately identified patients with early versus late recurrences (Spearman correlation = 0.75, P value = .001, AUC = 0.92, sensitivity = 0.75, specificity = 1.0, positive predictive value = 1.0, and negative predictive value = 0.8). Unique associations of breast cancer intrinsic subtype to timing of local recurrence were identified. In UVA and MVA the early versus late recurrence signature remained the most significant factor associated with recurrence. Gene set enrichment analysis identified proliferation and epidermal growth factor receptor concepts associated with early recurrences and luminal and ER-signaling pathways associated with late recurrences. Knockdown of genes associated with the early and late recurrences demonstrated novel effects on proliferation and clonogenic survival, respectively. CONCLUSIONS: We report a breast cancer gene signature that may identify patients unlikely to respond to adjuvant radiation and may be used to predict timing of recurrences with implications for potential treatment intensification and duration of follow-up for women with breast cancer treated with radiation.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/radioterapia , Recurrencia Local de Neoplasia/genética , Área Bajo la Curva , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/cirugía , Estudios de Cohortes , Femenino , Francia , Expresión Génica , Perfilación de la Expresión Génica , Humanos , Mastectomía Segmentaria , Recurrencia Local de Neoplasia/epidemiología , Países Bajos , Modelos de Riesgos Proporcionales , Curva ROC , Radioterapia Adyuvante , Reproducibilidad de los Resultados , Estadísticas no Paramétricas , Factores de Tiempo
16.
Neoplasia ; 22(4): 192-202, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32145689

RESUMEN

Androgen receptor (AR) and its constitutively active variants (AR-Vs) have been extensively implicated in the progression and recurrence of prostate cancer, making them attractive targets in the treatment of this disease. Whether and how neddylation modification regulates AR, and the therapeutic implications of this potential regulation, are relatively unexplored areas of investigation. Here we report that neddylation inactivation by the pharmacological inhibitor MLN4924 or Lenti-shRNA-based genetic knockdown of neddylation activating enzyme (NAE) selectively suppressed growth and survival of prostate cancer cells with minor, if any, effect on normal prostate epithelial cells. MLN4924 also significantly suppressed the invasive capacity of prostate cancer cells. Furthermore, compared to monotherapy, the combination of MLN4924 with AR antagonist or castration significantly enhanced growth suppression of prostate cancer cells in vitro, and tumor growth in an in vivo xenograft model. Mechanistically, MLN4924 repressed the transcription of AR/AR-V7 and its downstream targets, and blocked MMP2 and MMP9 expression. Taken together, our study reveals that the neddylation pathway positively regulates AR/AR-V7 transcription, and that the neddylation inhibitor MLN4924 has therapeutic potential for the treatment of aggressive prostate cancers.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Procesamiento Proteico-Postraduccional , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ciclopentanos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Ratones , Modelos Biológicos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Pirimidinas/farmacología , Transcripción Genética
17.
Artículo en Inglés | MEDLINE | ID: mdl-32117061

RESUMEN

Increased rates of locoregional recurrence (LR) have been observed in triple negative breast cancer (TNBC) despite multimodality therapy, including radiation (RT). Recent data suggest inhibiting the androgen receptor (AR) may be an effective radiosensitizing strategy, and AR is expressed in 15-35% of TNBC tumors. The aim of this study was to determine whether seviteronel (INO-464), a novel CYP17 lyase inhibitor and AR antagonist, is able to radiosensitize AR-positive (AR+) TNBC models. In cell viability assays, seviteronel and enzalutamide exhibited limited effect as a single agent (IC50 > 10 µM). Using clonogenic survival assays, however, AR knockdown and AR inhibition with seviteronel were effective at radiosensitizing cells with radiation enhancement ratios of 1.20-1.89 in models of TNBC with high AR expression. AR-negative (AR-) models, regardless of their estrogen receptor expression, were not radiosensitized with seviteronel treatment at concentrations up to 5 µM. Radiosensitization of AR+ TNBC models was at least partially dependent on impaired dsDNA break repair with significant delays in repair at 6, 16, and 24 h as measured by immunofluorescent staining of γH2AX foci. Similar effects were observed in an in vivo AR+ TNBC xenograft model where there was a significant reduction in tumor volume and a delay to tumor doubling and tripling times in mice treated with seviteronel and radiation. Following combination treatment with seviteronel and radiation, increased binding of AR occurred at DNA damage response genes, including genes involved both in homologous recombination and non-homologous end joining. This trend was not observed with combination treatment of enzalutamide and RT, suggesting that seviteronel may have a different mechanism of radiosensitization compared to other AR inhibitors. Enzalutamide and seviteronel treatment also had different effects on AR and AR target genes as measured by immunoblot and qPCR. These results implicate AR as a mediator of radioresistance in AR+ TNBC models and support the use of seviteronel as a radiosensitizing agent in AR+ TNBC.


Asunto(s)
Antagonistas de Receptores Androgénicos/farmacología , Inhibidores Enzimáticos/farmacología , Naftalenos/farmacología , Fármacos Sensibilizantes a Radiaciones/farmacología , Esteroide 17-alfa-Hidroxilasa/antagonistas & inhibidores , Triazoles/farmacología , Neoplasias de la Mama Triple Negativas/radioterapia , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Benzamidas , Línea Celular Tumoral , Femenino , Humanos , Liasas/antagonistas & inhibidores , Células MCF-7 , Ratones , Ratones Endogámicos C57BL , Ratones SCID , Nitrilos , Feniltiohidantoína/administración & dosificación , Feniltiohidantoína/análogos & derivados , Tolerancia a Radiación/efectos de los fármacos , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
18.
J Clin Invest ; 130(2): 958-973, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31961339

RESUMEN

Increased rates of locoregional recurrence are observed in patients with basal-like breast cancer (BC) despite the use of radiation therapy (RT); therefore, approaches that result in radiosensitization of basal-like BC are critically needed. Using patients' tumor gene expression data from 4 independent data sets, we correlated gene expression with recurrence to find genes significantly correlated with early recurrence after RT. The highest-ranked gene, TTK, was most highly expressed in basal-like BC across multiple data sets. Inhibition of TTK by both genetic and pharmacologic methods enhanced radiosensitivity in multiple basal-like cell lines. Radiosensitivity was mediated, at least in part, through persistent DNA damage after treatment with TTK inhibition and RT. Inhibition of TTK impaired homologous recombination (HR) and repair efficiency, but not nonhomologous end-joining, and decreased the formation of Rad51 foci. Reintroduction of wild-type TTK rescued both radioresistance and HR repair efficiency after TTK knockdown; however, reintroduction of kinase-dead TTK did not. In vivo, TTK inhibition combined with RT led to a significant decrease in tumor growth in both heterotopic and orthotopic, including patient-derived xenograft, BC models. These data support the rationale for clinical development of TTK inhibition as a radiosensitizing strategy for patients with basal-like BC, and efforts toward this end are currently underway.


Asunto(s)
Neoplasias de la Mama/metabolismo , Proteínas de Ciclo Celular/biosíntesis , Bases de Datos de Ácidos Nucleicos , Regulación Neoplásica de la Expresión Génica , Recombinación Homóloga , Proteínas de Neoplasias/biosíntesis , Proteínas Serina-Treonina Quinasas/biosíntesis , Proteínas Tirosina Quinasas/biosíntesis , Tolerancia a Radiación , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Daño del ADN , Femenino , Humanos , Proteínas de Neoplasias/análisis , Proteínas de Neoplasias/genética , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/genética
19.
Neoplasia ; 22(2): 111-119, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31931431

RESUMEN

Androgen receptor (AR) antagonists, such as enzalutamide, have had a major impact on the treatment of metastatic castration-resistant prostate cancer (CRPC). However, even with the advent of AR antagonist therapies, patients continue to develop resistance, and new strategies to combat continued AR signalling are needed. Here, we develop AR degraders using PROteolysis TArgeting Chimeric (PROTAC) technology in order to determine whether depletion of AR protein can overcome mechanisms of resistance commonly associated with current AR-targeting therapies. ARD-61 is the most potent of the AR degraders and effectively induces on-target AR degradation with a mechanism consistent with the PROTAC design. Compared to clinically-approved AR antagonists, administration of ARD-61 in vitro and in vivo results in more potent anti-proliferative, pro-apoptotic effects and attenuation of downstream AR target gene expression in prostate cancer cells. Importantly, we demonstrate that ARD-61 functions in enzalutamide-resistant model systems, characterized by diverse proposed mechanisms of resistance that include AR amplification/overexpression, AR mutation, and expression of AR splice variants, such as AR-V7. While AR degraders are unable to bind and degrade AR-V7, they continue to inhibit tumor cell growth in models overexpressing AR-V7. To further explore this, we developed several isogenic prostate cell line models in which AR-V7 is highly expressed, which also failed to influence the cell inhibitory effects of AR degraders, suggesting that AR-V7 is not a functional resistance mechanism for AR antagonism. These data provide compelling evidence that full-length AR remains a prominent oncogenic driver of prostate cancers which have developed resistance to AR antagonists and highlight the clinical potential of AR degraders for treatment of CRPC.


Asunto(s)
Antagonistas de Receptores Androgénicos/farmacología , Andrógenos/genética , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Receptores Androgénicos/efectos de los fármacos , Andrógenos/metabolismo , Animales , Benzamidas/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Ratones , Nitrilos/farmacología , Feniltiohidantoína/farmacología , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Receptores Androgénicos/genética , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Cancer Metab ; 8: 1, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31908776

RESUMEN

BACKGROUND: Metabolic programs in cancer cells are influenced by genotype and the tissue of origin. We have previously shown that central carbon metabolism is rewired in pancreatic ductal adenocarcinoma (PDA) to support proliferation through a glutamate oxaloacetate transaminase 1 (GOT1)-dependent pathway. METHODS: We utilized a doxycycline-inducible shRNA-mediated strategy to knockdown GOT1 in PDA and colorectal cancer (CRC) cell lines and tumor models of similar genotype. These cells were analyzed for the ability to form colonies and tumors to test if tissue type impacted GOT1 dependence. Additionally, the ability of GOT1 to impact the response to chemo- and radiotherapy was assessed. Mechanistically, the associated specimens were examined using a combination of steady-state and stable isotope tracing metabolomics strategies and computational modeling. Statistics were calculated using GraphPad Prism 7. One-way ANOVA was performed for experiments comparing multiple groups with one changing variable. Student's t test (unpaired, two-tailed) was performed when comparing two groups to each other. Metabolomics data comparing three PDA and three CRC cell lines were analyzed by performing Student's t test (unpaired, two-tailed) between all PDA metabolites and CRC metabolites. RESULTS: While PDA exhibits profound growth inhibition upon GOT1 knockdown, we found CRC to be insensitive. In PDA, but not CRC, GOT1 inhibition disrupted glycolysis, nucleotide metabolism, and redox homeostasis. These insights were leveraged in PDA, where we demonstrate that radiotherapy potently enhanced the effect of GOT1 inhibition on tumor growth. CONCLUSIONS: Taken together, these results illustrate the role of tissue type in dictating metabolic dependencies and provide new insights for targeting metabolism to treat PDA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA