Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Am J Transplant ; 21(3): 968-977, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32633070

RESUMEN

Eliminating cytoreductive conditioning from chimerism-based tolerance protocols would facilitate clinical translation. Here we investigated the impact of major histocompatibility complex (MHC) and minor histocompatibility antigen (MiHA) barriers on mechanisms of tolerance and rejection in this setting. Transient depletion of natural killer (NK) cells at the time of bone marrow (BM) transplantation (BMT) (20 × 106 BALB/c BM cells → C57BL/6 recipients under costimulation blockade [CB] and rapamycin) prevented BM rejection. Despite persistent levels of mixed chimerism, BMT recipients gradually rejected skin grafts from the same donor strain. Extending NK cell depletion did not improve skin graft survival. However, F1 (C57BL/6×BALB/c) donors, which do not elicit NK cell-mediated rejection, induced durable chimerism and tolerance. In contrast, if F1 donors with BALB/c background only were used (BALB/c×BALB.B), no tolerance was observed. In the absence of MiHA disparities (B10.D2 donors, MHC-mismatch only), temporal NK cell depletion established stable chimerism and tolerance. Conversely, MHC identical BM (BALB.B donors, MiHA mismatch only) readily engrafted without NK cell depletion but no skin graft tolerance ensued. Therefore, we conclude that under CB and rapamycin, MHC disparities provoke NK cell-mediated BM rejection in nonirradiated recipients whereas MiHA disparities do not prevent BM engraftment but impede skin graft tolerance in established mixed chimeras.


Asunto(s)
Quimerismo , Tolerancia Inmunológica , Animales , Trasplante de Médula Ósea , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Trasplante de Piel , Quimera por Trasplante , Tolerancia al Trasplante
2.
Proc Natl Acad Sci U S A ; 116(27): 13508-13516, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31196957

RESUMEN

Injection of Interleukin-2 (IL-2) complexed with a particular anti-IL-2 monoclonal antibody (mab) JES6-1 has been shown to selectively expand CD4+Foxp3+ T regulatory T cells (Tregs) in vivo. Although the potency of this approach with regard to transplantation has already been proven in an islet transplantation model, skin graft survival could not be prolonged. Since the latter is relevant to human allograft survival, we sought to improve the efficiency of IL-2 complex (cplx) treatment for skin allograft survival in a stringent murine skin graft model. Here, we show that combining low doses of IL-2 cplxs with rapamycin and blockade of the inflammatory cytokine IL-6 leads to long-term (>75 d) survival of major histocompatibility complex-different skin allografts without the need for immunosuppression. Allograft survival was critically dependent on CD25+FoxP3+ Tregs and was not accompanied by impaired responsiveness toward donor alloantigens in vitro after IL-2 cplx treatment was stopped. Furthermore, second donor-type skin grafts were rejected and provoked rejection of the primary graft, suggesting that operational tolerance is not systemic but restricted to the graft. These findings plus the lack of donor-specific antibody formation imply that prolonged graft survival was largely a reflection of immunological ignorance. The results may represent a potentially clinically translatable strategy for the development of protocols for tolerance induction.


Asunto(s)
Rechazo de Injerto/prevención & control , Supervivencia de Injerto , Trasplante de Piel , Linfocitos T Reguladores/inmunología , Aloinjertos , Animales , Anticuerpos Monoclonales/inmunología , Femenino , Citometría de Flujo , Supervivencia de Injerto/inmunología , Inmunosupresores/uso terapéutico , Interleucina-2/inmunología , Interleucina-6/antagonistas & inhibidores , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Sirolimus/uso terapéutico
3.
Am J Transplant ; 19(2): 591-596, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30346652

RESUMEN

Resistance to parental bone marrow (BM) grafts in F1 hybrid recipients is due to natural killer (NK) cell-mediated rejection triggered through "missing self" recognition. "Hybrid resistance" has usually been investigated in lethally irradiated F1 recipients in conjunction with pharmacological activation of NK cells. Here, we investigated BM-directed NK-cell alloreactivity in settings of reduced conditioning. Nonlethally irradiated (1-3 Gy) or nonirradiated F1 (C57BL6 × BALB/c) recipient mice received titrated doses (5-20 x 106 ) of unseparated parental BALB/c BM without pharmacological NK cell activation. BM successfully engrafted in all mice and multilineage donor chimerism persisted long-term (24 weeks), even in the absence of irradiation. Chimerism was associated with the rearrangement of the NK-cell receptor repertoire suggestive of reduced reactivity to BALB/c. Chimerism levels were lower after transplantation with parental BALB/c than with syngeneic F1 BM, indicating partial NK-mediated rejection of parental BM. Activation of NK cells with polyinosinic-polycytidylic acid sodium salt poly(I:C), reduced parental chimerism in nonirradiated BM recipients but did not prevent hematopoietic stem cell engraftment. In contrast, equal numbers of parental lymph node cells were completely rejected. Hence, hybrid resistance leads to incomplete rejection of parental BM under reduced conditioning settings.


Asunto(s)
Trasplante de Médula Ósea/métodos , Médula Ósea/inmunología , Rechazo de Injerto/inmunología , Tolerancia Inmunológica/inmunología , Células Asesinas Naturales/inmunología , Quimera por Trasplante/inmunología , Animales , Médula Ósea/efectos de la radiación , Femenino , Células Asesinas Naturales/efectos de la radiación , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL
4.
J Heart Lung Transplant ; 37(9): 1119-1130, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29699851

RESUMEN

BACKGROUND: The mixed chimerism approach for intentional induction of donor-specific tolerance was shown to be successful in various models from mice to humans. For transplant patients, the approach would obviate the need for long-term immunosuppression and associated side effects; moreover, it would preclude the risk of late graft loss due to chronic rejection. Widespread clinical application is hindered by toxicities related to recipient pre-conditioning. Herein we aimed to investigate a clinically relevant protocol for tolerance induction to cardiac allografts, sparing CD40 blockade or T-cell depletion. METHODS: B6 mice were conditioned with non-myeloablative total body irradiation, fully mismatched BALB/c bone marrow cells, and short-term therapy, based on either anti- lymphocyte function-associated antigen-1 (anti-LFA-1) or anti-CD40L. Multilineage chimerism was followed by flow-cytometric analysis, tolerance was assessed with skin and heart allografts from fully or major histocompatibility complex-mismatched donors. Mechanisms of tolerance were investigated by analysis of donor-specific antibodies (DSAs), mixed lymphocyte reaction (MLR) assays, and deletion of donor-reactive T cells. RESULTS: We found that the combination of cytotoxic T-lymphocyte antigen 4 immunoglobulin (CTLA4Ig) and rapamycin with LFA-1 blockade enhanced bone marrow engraftment and led to more efficient T-cell engraftment and subsequent tolerization. Although fully mismatched skin grafts were chronically rejected, primarily vascularized heart allografts survived indefinitely and without signs of chronic rejection, independent of minor antigen mismatches. CONCLUSIONS: We have demonstarted a robust protocol for the induction of tolerance for cardiac allografts in the absence of CD40 blockade. Our findings demonstrate the potential of a clinically relevant minimal conditioning protocol designed to induce lifelong immunologic tolerance toward cardiac allografts.


Asunto(s)
Rechazo de Injerto/fisiopatología , Supervivencia de Injerto/fisiología , Antígeno-1 Asociado a Función de Linfocito/fisiología , Linfocitos T/fisiología , Quimera por Trasplante/fisiología , Animales , Antígenos CD40/fisiología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos
5.
Front Immunol ; 8: 821, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28769930

RESUMEN

Transfer of recipient regulatory T cells (Tregs) induces mixed chimerism and tolerance in an irradiation-free bone marrow (BM) transplantation (BMT) model involving short-course co-stimulation blockade and mTOR inhibition. Boosting endogenous Tregs pharmacologically in vivo would be an attractive alternative avoiding the current limitations of performing adoptive cell therapy in the routine clinical setting. Interleukin-6 (IL-6) potently inhibits Treg differentiation and its blockade was shown to increase Treg numbers in vivo. Therefore, we investigated whether IL-6 blockade can replace adoptive Treg transfer in irradiation-free allogeneic BMT. Treatment with anti-IL-6 instead of Treg transfer led to multi-lineage chimerism (persisting for ~12 weeks) in recipients of fully mismatched BM and significantly prolonged donor skin (MST 58 days) and heart (MST > 100 days) graft survival. Endogenous Foxp3+ Tregs expanded in anti-IL-6-treated BMT recipients, while dendritic cell (DC) activation and memory CD8+ T cell development were inhibited. Adding anti-IL-17 to anti-IL-6 treatment increased Treg frequencies, but did not further prolong donor skin graft survival significantly. These results demonstrate that IL-6 blockade promotes BM engraftment and donor graft survival in non-irradiated recipients and might provide an alternative to Treg cell therapy in the clinical setting.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...