Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(6)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38542993

RESUMEN

The ability to efficiently separate CO2 from other light gases using membrane technology has received a great deal of attention due to its importance in applications such as improving the efficiency of natural gas and reducing greenhouse gas emissions. A wide range of materials has been employed for the fabrication of membranes. This paper highlights the work carried out to develop novel advanced membranes with improved separation performance. We integrated a polymerizable and amino acid ionic liquid (AAIL) with zeolite to fabricate mixed matrix membranes (MMMs). The MMMs were prepared with (vinylbenzyl)trimethylammonium chloride [VBTMA][Cl] and (vinylbenzyl)trimethylammonium glycine [VBTMA][Gly] as the polymeric support with 5 wt% zeolite particles, and varying concentrations of 1-butyl-3-methylimidazolium glycine, [BMIM][Gly] (5-20 wt%) blended together. The membranes were fabricated through photopolymerization. The extent of polymerization was confirmed using FTIR. FESEM confirmed the membranes formed are dense in structure. The thermal properties of the membranes were measured using TGA and DSC. CO2 and CH4 permeation was studied at room temperature and with a feed side pressure of 2 bar. [VBTMA][Gly]-based membranes recorded higher CO2 permeability and CO2/CH4 selectivity compared to [VBTMA][Cl]-based membranes due to the facilitated transport of CO2. The best performing membrane Gly-Gly-20 recorded permeance of 4.17 GPU and ideal selectivity of 5.49.

2.
ACS Appl Mater Interfaces ; 15(37): 43976-43984, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37695310

RESUMEN

Producing sulfur from a sulfide oxidation reaction (SOR)-based technique using sulfide aqueous solution has attracted considerable attention due to its ecofriendliness. This study demonstrates that NiS-doped cobalt sulfide NiS-CoS-supported NiCo alloy foam can deliver the SOR with superior electrocatalytic activity and robust stability compared to reported non-noble metal-based catalysts. Only 0.34 V vs RHE is required to drive a current density of 100 mA cm-2 for the SOR. According to the experiment, the catalyst exhibits a unique sulfurophobicity feature because of the weak interaction between sulfur and the transition metal sulfide (low affinity for elemental sulfur), preventing electrode corrosion during the SOR process. More impressively, the chain-growth mechanism of the SOR from short- to long-chain polysulfides was revealed by combining electrochemical and spectroscopic in situ methods, such as in situ ultraviolet-visible and Raman. It is also demonstrated that electrons can transfer straight from the sulfion (S2-) to the active site on the anode surface during the low-energy-consumption SOR process. This work provides new insight into simultaneous energy-saving hydrogen production and high-value-added S recovery from sulfide-containing wastewater.

3.
Molecules ; 28(15)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37570745

RESUMEN

Aiming at the generation of new functionalised thiosalicylate-based ionic liquids, a polymeric hydrogel consisting of 1-hexylimidazole propionitrile thiosalicylate [HIMP][TS], with a solid biomaterial support based on polyvinyl alcohol (PVA)-alginate beads, was produced. This study aimed to develop a treatment method for removing manganese (Mn) heavy metal from industrial wastewater, which is known to be toxic and harmful towards the environment and human health. The method utilised an adsorption-based approach with an alginate adsorbent that incorporated a functionalised thiosalicylate-based ionic liquid. The synthesised smooth round beads of PVA-alginate-[HIMP][TS] adsorbent were structurally characterised using Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM). The Mn concentration and removal efficiency were evaluated using atomic absorption spectroscopy (AAS). Three important parameters were evaluated: pH, adsorbent dosage, and contact time. During optimisation using the interactive factor design of experiments through the Box-Behnken model, the results showed that the system achieved a maximum Mn removal efficiency of 98.91% at an initial pH of 7.15, with a contact time of 60 min, using a bead dosage of 38.26 g/L. The beads were also tested in an available water filtration prototype system to illustrate their industrial application, and the performance showed a removal efficiency of 99.14% with 0 NTU total suspended solid (TSS) and 0.13 mg/L turbidity analysis. The recyclability of PVA-alginate-[HIMP][TS] beads using 0.5 M HCl resulted in four cycles with constant 99% Mn removal. The adsorption capacity of Mn was also determined in optimum conditions with 56 mg/g. Therefore, the alginate-thiosalicylate-based ionic liquid system is considered an effective and environmentally friendly method for removing Mn heavy metal due to the high removal efficiency achieved.

4.
Molecules ; 28(8)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37110627

RESUMEN

Asphaltenes are recognized as being troublesome from upstream to downstream in the oil industry due to their tendency to precipitate and self-associate. Their extraction from asphaltenic crude oil for a cost-effective refining process is a crucial and critical challenge in the oil and gas sector. Lignosulfonate (LS), as a by-product of the wood pulping process in the papermaking industry, is a highly available and underutilized feedstock. This study aimed to synthesize novel LS-based ionic liquids (ILs) by reacting lignosulfonate acid sodium salt [Na]2[LS] with different alkyl chains of piperidinium chloride for asphaltene dispersion. The synthesized ILs, 1-hexyl-1-methyl-piperidinium lignosulfonate [C6C1Pip]2[LS], 1-octyl-1-methyl-piperidinium lignosulfonate [C8C1Pip]2[LS], 1-dodecyl-1-methyl-piperidinium lignosulfonate [C12C1Pip]2[LS] and 1-hexadecyl-1-methyl-piperidinium lignosulfonate [C16C1Pip]2[LS] were characterized using FTIR-ATR and 1H NMR for functional groups and structural confirmation. The ILs depicted high thermal stability because of the presence of a long side alkyl chain and piperidinium cation following thermogravimetric analysis (TGA). Asphaltene dispersion indices (%) of ILs were tested by varying contact time, temperature and ILs concentration. The obtained indices were high for all ILs, with a dispersion index of more than 91.2% [C16C1Pip]2[LS], representing the highest dispersion at 50,000 ppm. It was able to lower asphaltene particle size diameter from 51 nm to 11 nm. The kinetic data of [C16C1Pip]2[LS] were consistent with the pseudo-second-order kinetic model. The dispersion index (%), asphaltene particle growth and the kinetic model agreed with the molecular modeling studies of the HOMO-LUMO energy of IL holds.

5.
Molecules ; 28(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36677888

RESUMEN

The main objectives of this study are to synthesize a new solid-supported ionic liquid (SSIL) that has a covalent bond between the solid support, i.e., activated silica gel, with thiosalicylate-based ionic liquid and to evaluate the performance of this new SSIL as an extractant, labelled as Si-TS-SSIL, and to remove Pb(II) ions from an aqueous solution. In this study, 1-methyl-3-(3-trimethoxysilylpropyl) imidazolium thiosalicylate ([MTMSPI][TS]) ionic liquid was synthesized and the formation of [MTMSPI][TS] was confirmed through structural analysis using NMR, FTIR, IC, TGA, and Karl Fischer Titration. The [MTMSPI][TS] ionic liquid was then chemically immobilized on activated silica gel to produce a new thiosalicylate-based solid-supported ionic liquid (Si-TS-SSIL). The formation of these covalent bonds on Si-TS-SSIL was confirmed by solid-state NMR analysis. Meanwhile, BET analysis was performed to study the surface area of the activated silica gel and the prepared Si-TS-SSIL (before and after washing with solvent) with the purpose to show that all physically immobilized [MTMSPI][TS] has been washed off from Si-TS-SSIL, leaving only chemically immobilized [MTMSPI][TS] on Si-TS-SSIL before proceeding with removal study. The removal study of Pb(II) ions from an aqueous solution was carried out using Si-TS-SSIL as an extractant, whereby the amount of Pb(II) ions removed was determined by AAS. In this removal study, the experiments were carried out at a fixed agitation speed (400 rpm) and fixed amount of Si-TS-SSIL (0.25 g), with different contact times ranging from 2 to 250 min at room temperature. The maximum removal capacity was found to be 8.37 mg/g. The kinetics study was well fitted with the pseudo-second order model. Meanwhile, for the isotherm study, the removal process of Pb(II) ions was well described by the Freundlich isotherm model, as this model exhibited a higher correlation coefficient (R2), i.e., 0.99, as compared to the Langmuir isotherm model.


Asunto(s)
Líquidos Iónicos , Contaminantes Químicos del Agua , Líquidos Iónicos/química , Plomo , Gel de Sílice/química , Adsorción , Agua , Iones/química , Cinética , Contaminantes Químicos del Agua/química
6.
Materials (Basel) ; 15(23)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36499791

RESUMEN

A novel technique was employed to optimize the CO2 sorption performance of spent shale at elevated pressure-temperature (PT) conditions. Four samples of spent shale prepared from the pyrolysis of oil shale under an anoxic condition were further modified with diethylenetriamine (DETA) and ethylenediamine (EDA) through the impregnation technique to investigate the variations in their physicochemical characteristics and sorption performance. The textural and structural properties of the DETA- and EDA- modified samples revealed a decrease in the surface area from tens of m2/g to a unit of m2/g due to the amine group dispersing into the available pores, but the pore sizes drastically increased to macropores and led to the creation of micropores. The N-H and C-N bonds of amine noticed on the modified samples exhibit remarkable affinity for CO2 sequestration and are confirmed to be thermally stable at higher temperatures by thermogravimetric (TG) analysis. Furthermore, the maximum sorption capacity of the spent shale increased by about 100% with the DETA modification, and the equilibrium isotherm analyses confirmed the sorption performance to support heterogenous sorption in conjunction with both monolayer and multilayer coverage since they agreed with the Sips, Toth, Langmuir, and Freundlich models. The sorption kinetics confirm that the sorption process is not limited to diffusion, and both physisorption and chemisorption have also occurred. Furthermore, the heat of enthalpy reveals an endothermic reaction observed between the CO2 and amine-modified samples as a result of the chemical bond, which will require more energy to break down. This investigation reveals that optimization of spent shale with amine functional groups can enhance its sorption behavior and the amine-modified spent shale can be a promising sorbent for CO2 sequestration from impure steams of the natural gas.

7.
Materials (Basel) ; 15(8)2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35454511

RESUMEN

Asphaltene is a component of crude oil that has remained relatively unexplored for organic electronic applications. In this study, we report on its extraction technique from crude oil tank bottom sludge (COTBS) and its thin-film characteristics when 1-ethyl-3-methylimidazolium chloride ([EMIM]Cl) ionic liquid (IL) was introduced as dopants. The extraction technique yielded asphaltene with more than 80% carbon content. The IL resulted in asphaltene thin films with a typical root-mean-square surface roughness of 4 nm, suitable for organic electronic applications. The thin films each showed an optical band gap of 3.8 eV and a sheet resistance as low as 105 Ω/□. When the film was used as a conductive layer in organic field-effect transistors (OFET), it exhibited hole and electron conduction with hole (µh) and electron (µe) mobilities in the order of 10-8 and 10-6 cm2/Vs, respectively. These characteristics are just preliminary in nature. With the right IL, asphaltene thin films may become a good alternative for a transport layer in organic electronic applications.

8.
Biomolecules ; 10(8)2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32781499

RESUMEN

This study performs a screening of potential Ionic Liquids (ILs) for the extraction of Docosahexaenoic Acid (DHA) compounds by the calculation of capacity values. For this purpose, a Conductor-Like Screening Model for Real Solvents (COSMO-RS) was employed to study the molecular structures of the ILs, and therefore, predict their extraction potential. The capacity values of 22 anions combined with 16 cations based ILs, were investigated to evaluate the effectiveness of ILs in the extraction of DHA. It was found that among the investigated ILs, a combination of tetramethyl ammonium with SO4 or Cl was the best fit for DHA extraction, followed by pyrrolidinium, imidazolium, pyridinium and piperidinium. Furthermore, it was observed that the extraction capacity and the selectivity of ILs decreased with an increase in alkyl chain length; therefore, ethyl chain-ILs, with the shortest chain lengths, were found to be most suitable for DHA extraction. The predicted results were validated through the experimentally calculated extraction yield of a DHA compound from Nannochloropsis sp. Microalgae. Five selected ILs, namely [EMIM][Cl], [BMIM][Cl], [TMAm][Cl], [EMPyr][Br] and [EMPyrro][Br], were selected from COSMO-RS for empirical extraction purposes, and the validation results pinpointed the good prediction capabilities of COSMO-RS. The findings in this study can simplify the process of selecting suitable ILs for DHA extraction and reduce the number of required empirical evaluations.


Asunto(s)
Ácidos Docosahexaenoicos/química , Líquidos Iónicos/química , Microalgas/química , Extracción en Fase Sólida/métodos , Simulación por Computador , Imidazoles/química , Pirrolidinas/química
9.
Molecules ; 24(4)2019 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-30781457

RESUMEN

Omega-3 poly unsaturated fatty acids (PUFA) particularly eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), have many health benefits including reducing the risk of cancer and cardiovascular disease. Recently, the use of ionic liquids (ILs) in lipid extraction from microalgae provides the potential to overcome common drawbacks, offers several other benefits. To date, very limited researches are available to focus on extracting microalgae lipid and PUFA in particular by using ILs. The objective of current work is to screen the potential ILs that can be applied in EPA extraction. In this study, fast ILs screening was performed with the help of a conductor like screening model for real solvents (COSMO-RS) and the ILs with higher capacity values for use in extraction of EPA were compared. According to the results, the highest capacity for EPA extraction among 352 screened cation/anion combinations belongs to [TMAm][SO4]. It is expected to achieve a higher yield of EPA once applying this combination as the solvent in the process of extraction. ILs with small anions were observed to have higher capacities, as well possessing higher charge density compared to larger ones, and therefore, they are more preferable for extraction purposes. Moreover, shorter alkyl chain cations are preferred when using imidazolium-based IL, which agrees with experimental data.


Asunto(s)
Biomasa , Ácido Eicosapentaenoico/química , Ácido Eicosapentaenoico/aislamiento & purificación , Líquidos Iónicos/química , Microalgas/química , Modelos Químicos , Solventes/química , Algoritmos , Enlace de Hidrógeno , Modelos Moleculares , Estructura Molecular
10.
Environ Technol ; 40(28): 3705-3712, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29873603

RESUMEN

The present work reports the extraction of phenolic compounds from Polygonum minus using ionic liquid as extracting solvent. In this work, 1-Butyl-3-methylimidazolium hydrogen sulfate [BMIM][HSO4] was used for the extraction of bioactive compounds. Accordingly, ionic liquids based microwave-assisted extraction treatment for separating of bioactive compounds from polygonum minus was first performed in the present study. The results obtained in this work have high extraction yield in comparison with conventional solvent. UV/Vis results showed that microwave synthesis was fast, well dispersed and nanosized copper nanoparticle (CuNPs) in comparison with conventional synthesis. CuNPs was characterised by X-Rays diffractometer (XRD), Fourier transform infrared (FTIR), dynamic light scattering (DLS), field emission scanning electron microscopy combined with energy dispersive x-rays (FESEM-EDX), and thermogravimetric analysis (TGA). All the instrumental analyses confirmed the particles were nanosized. Furthermore, the antibacterial activity of as-synthesised CuNPs showed effective inhibitory zone against three different bacteria. The photocatalytic degradation of copper nanoparticles was studied using methylene blue (MB) and methyl orange (MO) dyes under UV light and degraded 99.9% within short time 8 and 7 min.


Asunto(s)
Líquidos Iónicos , Nanopartículas , Polygonum , Cobre , Extractos Vegetales
11.
Ultrason Sonochem ; 37: 310-319, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28427638

RESUMEN

5-Hydroxymethylfurfural (HMF) has been identified as a promising biomass-derived platform chemical. In this study, one pot production of HMF was studied in ionic liquid (IL) under probe sonication technique. Compared with the conventional heating technique, the use of probe ultrasonic irradiation reduced the reaction time from hours to minutes. Glucose, cellulose and local bamboo, treated with ultrasonic, produced HMF in the yields of 43%, 31% and 13% respectively, within less than 10min. The influence of various parameters such as acoustic power, reaction time, catalysts and glucose loading were studied. About 40% HMF yield at glucose conversion above 90% could be obtained with 2% of catalyst in 3min. Negligible amount of soluble by-product was detected, and humin formation could be controlled by adjusting the different process parameters. Upon extraction of HMF, the mixture of ionic liquid and catalyst could be reused and exhibited no significant reduction of HMF yield over five successive runs. The purity of regenerated [C4C1im]Cl and HMF was confirmed by NMR spectroscopy, indicating neither changes in the chemical structure nor presence of any major contaminants during the conversion under ultrasonic treatment. 13C NMR suggests that [C4C1im]Cl/CrCl3 catalyses mutarotation of α-glucopyranose to ß-glucopyranose leading to isomerization and finally conversion to HMF. The experimental results demonstrate that the use of probe sonication technique for conversion to HMF provides a positive process benefit.


Asunto(s)
Biomasa , Celulosa/química , Furaldehído/análogos & derivados , Glucosa/química , Líquidos Iónicos/química , Sonicación , Catálisis , Furaldehído/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...