RESUMEN
The underlying genetic and epigenetic mechanisms driving functional adaptations in neuronal excitability and excessive alcohol intake are poorly understood. Small-conductance Ca2+-activated K+ (KCa2 or SK) channels encoded by the KCNN family of genes have emerged from preclinical studies as a key contributor to alcohol-induced functional neuroadaptations in alcohol-drinking monkeys and alcohol-dependent mice. Here, this cross-species analysis focused on KCNN3 DNA methylation, gene expression, and single nucleotide polymorphisms, including alternative promoters in KCNN3, that could influence surface trafficking and function of KCa2 channels. Bisulfite sequencing analysis of the nucleus accumbens tissue from alcohol-drinking monkeys and alcohol-dependent mice revealed a differentially methylated region in exon 1A of KCNN3 that overlaps with a predicted promoter sequence. The hypermethylation of KCNN3 in the accumbens paralleled an increase in the expression of alternative transcripts that encode apamin-insensitive and dominant-negative KCa2 channel isoforms. A polymorphic repeat in macaque KCNN3 encoded by exon 1 did not correlate with alcohol drinking. At the protein level, KCa2.3 channel expression in the accumbens was significantly reduced in very heavy-drinking monkeys. Together, our cross-species findings on epigenetic dysregulation of KCNN3 represent a complex mechanism that utilizes alternative promoters to potentially impact the firing of accumbens neurons. Thus, these results provide support for hypermethylation of KCNN3 as a possible key molecular mechanism underlying harmful alcohol intake and alcohol use disorder.
Asunto(s)
Alcoholismo , Epigénesis Genética , Canales de Potasio de Pequeña Conductancia Activados por el Calcio , Animales , Ratones , Consumo de Bebidas Alcohólicas/genética , Alcoholismo/genética , Núcleo Accumbens , Haplorrinos , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/genéticaRESUMEN
Alcohol-use disorders encompass a range of drinking levels and behaviors, including low, binge, and heavy drinking. In this regard, investigating the neural state of individuals who chronically self-administer lower doses of alcohol may provide insight into mechanisms that prevent the escalation of alcohol use. DNA methylation is one of the epigenetic mechanisms that stabilizes adaptations in gene expression and has been associated with alcohol use. Thus, we investigated DNA methylation, gene expression, and the predicted neural effects in the nucleus accumbens core (NAcc) of male rhesus macaques categorized as "low" or "binge" drinkers, compared to "alcohol-naïve" and "heavy" drinkers based on drinking patterns during a 12-month alcohol self-administration protocol. Using genome-wide CpG-rich region enrichment and bisulfite sequencing, the methylation levels of 2.6 million CpGs were compared between alcohol-naïve (AN), low/binge (L/BD), and heavy/very heavy (H/VHD) drinking subjects (n = 24). Through regional clustering analysis, we identified nine significant differential methylation regions (DMRs) that specifically distinguished ANs and L/BDs, and then compared those DMRs among H/VHDs. The DMRs mapped to genes encoding ion channels, receptors, cell adhesion molecules, and cAMP, NF-κß and Wnt signaling pathway proteins. Two of the DMRs, linked to PDE10A and PKD2L2, were also differentially methylated in H/VHDs, suggesting an alcohol-dose independent effect. However, two other DMRs, linked to the CCBE1 and FZD5 genes, had L/BD methylation levels that significantly differed from both ANs and H/VHDs. The remaining five DMRs also differentiated L/BDs and ANs. However, H/VHDs methylation levels were not distinguishable from either of the two groups. Functional validation of two DMRs, linked to FZD5 and PDE10A, support their role in regulating gene expression and exon usage, respectively. In summary, the findings demonstrate that L/BD is associated with unique DNA methylation signatures in the primate NAcc, and that the methylation signatures identify synaptic genes that may play a role in preventing the escalation of alcohol use.
Asunto(s)
Consumo de Bebidas Alcohólicas/genética , Alcoholismo/genética , Consumo Excesivo de Bebidas Alcohólicas/genética , Metilación de ADN/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Etanol/toxicidad , Núcleo Accumbens/efectos de los fármacos , Consumo de Bebidas Alcohólicas/efectos adversos , Animales , Análisis por Conglomerados , Islas de CpG , Modelos Animales de Enfermedad , Exones , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Secuenciación de Nucleótidos de Alto Rendimiento , Macaca mulatta , Masculino , Núcleo Accumbens/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/genéticaRESUMEN
Nematodes within the Xiphinema americanum species complex are economically important because they vector nepoviruses which cause considerable damage to a variety of agricultural crops. The taxonomy of X. americanum species complex is controversial, with the number of putative species being the subject of debate. Accurate phylogenetic knowledge of this group is highly desirable as it may ultimately reveal genetic differences between species. For this study, nematodes belonging to the X. americanum species complex, including potentially mixed species populations, were collected from 12 geographically disparate locations across the U.S. from different crops and in varying association with nepoviruses. At least four individuals from each population were analyzed. A portion of the 18S nuclear ribosomal DNA (rDNA) gene was sequenced for all individuals while the internal transcribed spacer region 1 (ITS1) of rDNA was cloned and 2 to 6 clones per individual were sequenced. Mitochondrial genomes for numerous individuals were sequenced in parallel using high-throughput DNA sequencing (HTS) technology. Phylogenetic analysis of the 18S rDNA revealed virtually identical sequences across all populations. Analysis of ITS1 rDNA sequences revealed several well-supported clades, with some degree of congruence with geographic location and viral transmission, but also numerous presumably paralogous sequences that failed to form clades with other sequences from the same population. Analysis of mitochondrial DNA (mtDNA) indicated the presence of three distinct monophyletic clades of X. americanum species complex nematodes. Two clades contained nematodes found in association with nepovirus and the third contained divergent mtDNA sequences from three nematode populations from the western U.S. where nepovirus was absent. The inherent heterogeneity in ITS1 rDNA sequence data and lack of informative sites in 18S rDNA analysis suggests that mtDNA may be more useful in sorting out the taxonomic confusion of the X. americanum species complex.
Asunto(s)
Genoma Mitocondrial , Nematodos/clasificación , Nematodos/genética , Filogenia , ARN Ribosómico , Animales , ADN Mitocondrial , ADN Espaciador Ribosómico , Orden Génico , Datos de Secuencia Molecular , ARN Ribosómico 18S/genéticaRESUMEN
BACKGROUND: Cytosine DNA methylation (5mC) is an epigenetic modification that is important to genome stability and regulation of gene expression. Perturbations of 5mC have been implicated as a cause of phenotypic variation among plants regenerated through in vitro culture systems. However, the pattern of change in 5mC and its functional role with respect to gene expression, are poorly understood at the genome scale. A fuller understanding of how 5mC changes during in vitro manipulation may aid the development of methods for reducing or amplifying the mutagenic and epigenetic effects of in vitro culture and plant transformation. RESULTS: We investigated the in vitro methylome of the model tree species Populus trichocarpa in a system that mimics routine methods for regeneration and plant transformation in the genus Populus (poplar). Using methylated DNA immunoprecipitation followed by high-throughput sequencing (MeDIP-seq), we compared the methylomes of internode stem segments from micropropagated explants, dedifferentiated calli, and internodes from regenerated plants. We found that more than half (56%) of the methylated portion of the genome appeared to be differentially methylated among the three tissue types. Surprisingly, gene promoter methylation varied little among tissues, however, the percentage of body-methylated genes increased from 9% to 14% between explants and callus tissue, then decreased to 8% in regenerated internodes. Forty-five percent of differentially-methylated genes underwent transient methylation, becoming methylated in calli, and demethylated in regenerants. These genes were more frequent in chromosomal regions with higher gene density. Comparisons with an expression microarray dataset showed that genes methylated at both promoters and gene bodies had lower expression than genes that were unmethylated or only promoter-methylated in all three tissues. Four types of abundant transposable elements showed their highest levels of 5mC in regenerated internodes. CONCLUSIONS: DNA methylation varies in a highly gene- and chromosome-differential manner during in vitro differentiation and regeneration. 5mC in redifferentiated tissues was not reset to that in original explants during the study period. Hypermethylation of gene bodies in dedifferentiated cells did not interfere with transcription, and may serve a protective role against activation of abundant transposable elements.
Asunto(s)
Desdiferenciación Celular , Populus/citología , Populus/genética , Técnicas de Cultivo de Célula , Células Cultivadas , Citosina/metabolismo , Metilación de ADN , Epigenómica , Populus/fisiología , Transformación GenéticaRESUMEN
Pyrenophora tritici-repentis is a necrotrophic fungus causal to the disease tan spot of wheat, whose contribution to crop loss has increased significantly during the last few decades. Pathogenicity by this fungus is attributed to the production of host-selective toxins (HST), which are recognized by their host in a genotype-specific manner. To better understand the mechanisms that have led to the increase in disease incidence related to this pathogen, we sequenced the genomes of three P. tritici-repentis isolates. A pathogenic isolate that produces two known HSTs was used to assemble a reference nuclear genome of approximately 40 Mb composed of 11 chromosomes that encode 12,141 predicted genes. Comparison of the reference genome with those of a pathogenic isolate that produces a third HST, and a nonpathogenic isolate, showed the nonpathogen genome to be more diverged than those of the two pathogens. Examination of gene-coding regions has provided candidate pathogen-specific proteins and revealed gene families that may play a role in a necrotrophic lifestyle. Analysis of transposable elements suggests that their presence in the genome of pathogenic isolates contributes to the creation of novel genes, effector diversification, possible horizontal gene transfer events, identified copy number variation, and the first example of transduplication by DNA transposable elements in fungi. Overall, comparative analysis of these genomes provides evidence that pathogenicity in this species arose through an influx of transposable elements, which created a genetically flexible landscape that can easily respond to environmental changes.
Asunto(s)
Ascomicetos/genética , Ascomicetos/patogenicidad , Evolución Molecular , Variación Genética , Genoma Fúngico/genética , Micotoxinas/genética , Triticum/microbiología , Secuencia de Bases , Mapeo Cromosómico , Análisis Citogenético , Cartilla de ADN/genética , Elementos Transponibles de ADN/genética , Duplicación de Gen/genética , Genómica , Funciones de Verosimilitud , Modelos Genéticos , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADNRESUMEN
⢠Plant population genomics informs evolutionary biology, breeding, conservation and bioenergy feedstock development. For example, the detection of reliable phenotype-genotype associations and molecular signatures of selection requires a detailed knowledge about genome-wide patterns of allele frequency variation, linkage disequilibrium and recombination. ⢠We resequenced 16 genomes of the model tree Populus trichocarpa and genotyped 120 trees from 10 subpopulations using 29,213 single-nucleotide polymorphisms. ⢠Significant geographic differentiation was present at multiple spatial scales, and range-wide latitudinal allele frequency gradients were strikingly common across the genome. The decay of linkage disequilibrium with physical distance was slower than expected from previous studies in Populus, with r(2) dropping below 0.2 within 3-6 kb. Consistent with this, estimates of recent effective population size from linkage disequilibrium (N(e) ≈ 4000-6000) were remarkably low relative to the large census sizes of P. trichocarpa stands. Fine-scale rates of recombination varied widely across the genome, but were largely predictable on the basis of DNA sequence and methylation features. ⢠Our results suggest that genetic drift has played a significant role in the recent evolutionary history of P. trichocarpa. Most importantly, the extensive linkage disequilibrium detected suggests that genome-wide association studies and genomic selection in undomesticated populations may be more feasible in Populus than previously assumed.
Asunto(s)
Genoma de Planta , Genómica/métodos , Desequilibrio de Ligamiento , Populus/genética , Metilación de ADN , ADN de Plantas/genética , Evolución Molecular , Frecuencia de los Genes , Estudios de Asociación Genética/métodos , Flujo Genético , Técnicas de Genotipaje , Geografía , Polimorfismo de Nucleótido Simple , Análisis de Componente Principal , Recombinación Genética , Selección Genética , Sensibilidad y Especificidad , Análisis de Secuencia de ADN/métodosRESUMEN
Pyrenophora tritici-repentis (Ptr), a necrotrophic fungus and the causal agent of tan spot of wheat, produces one or a combination of host-selective toxins (HSTs) necessary for disease development. The two most studied toxins produced by Ptr, Ptr ToxA (ToxA) and Ptr ToxB (ToxB), are proteins that cause necrotic or chlorotic symptoms respectively. Investigation of host responses induced by HSTs provides better insight into the nature of the host susceptibility. Microarray analysis of ToxA has provided evidence that it can elicit responses similar to those associated with defense. In order to evaluate whether there are consistent host responses associated with susceptibility, a similar analysis of ToxB-induced changes in the same sensitive cultivar was conducted. Comparative analysis of ToxA- and ToxB-induced transcriptional changes showed that similar groups of genes encoding WRKY transcription factors, RLKs, PRs, components of the phenylpropanoid and jasmonic acid pathways are activated. ROS accumulation and photosystem dysfunction proved to be common mechanism-of-action for these toxins. Despite similarities in defense responses, transcriptional and biochemical responses as well as symptom development occur more rapidly for ToxA compared to ToxB, which could be explained by differences in perception as well as by differences in activation of a specific process, for example, ethylene biosynthesis in ToxA treatment. Results of this study suggest that perception of HSTs will result in activation of defense responses as part of a susceptible interaction and further supports the hypothesis that necrotrophic fungi exploit defense responses in order to induce cell death.
Asunto(s)
Ascomicetos/patogenicidad , Micotoxinas/farmacología , Enfermedades de las Plantas/genética , Triticum/genética , Triticum/microbiología , Muerte Celular/efectos de los fármacos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Predisposición Genética a la Enfermedad , Interacciones Huésped-Patógeno/genética , Redes y Vías Metabólicas/efectos de los fármacos , Familia de Multigenes/efectos de los fármacos , Estrés Oxidativo/genética , Fotosíntesis/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacosRESUMEN
Variation among lineages in the mutation process has the potential to impact diverse biological processes ranging from susceptibilities to genetic disease to the mode and tempo of molecular evolution. The combination of high-throughput DNA sequencing (HTS) with mutation-accumulation (MA) experiments has provided a powerful approach to genome-wide mutation analysis, though insights into mutational variation have been limited by the vast evolutionary distances among the few species analyzed. We performed a HTS analysis of MA lines derived from four Caenorhabditis nematode natural genotypes: C. elegans N2 and PB306 and C. briggsae HK104 and PB800. Total mutation rates did not differ among the four sets of MA lines. A mutational bias toward G:CâA:T transitions and G:CâT:A transversions was observed in all four sets of MA lines. Chromosome-specific rates were mostly stable, though there was some evidence for a slightly elevated X chromosome mutation rate in PB306. Rates were homogeneous among functional coding sequence types and across autosomal cores, arms, and tips. Mutation spectra were similar among the four MA line sets but differed significantly when compared with patterns of natural base-substitution polymorphism for 13/14 comparisons performed. Our findings show that base-substitution mutation processes in these closely related animal lineages are mostly stable but differ from natural polymorphism patterns in these two species.
Asunto(s)
Caenorhabditis elegans/genética , Variación Genética , Mutación Puntual , Animales , Caenorhabditis elegans/clasificación , Análisis Mutacional de ADN , Evolución Molecular , Genoma de los Helmintos , Tasa de Mutación , FilogeniaRESUMEN
BACKGROUND: DNA cytosine methylation is an epigenetic modification that has been implicated in many biological processes. However, large-scale epigenomic studies have been applied to very few plant species, and variability in methylation among specialized tissues and its relationship to gene expression is poorly understood. RESULTS: We surveyed DNA methylation from seven distinct tissue types (vegetative bud, male inflorescence [catkin], female catkin, leaf, root, xylem, phloem) in the reference tree species black cottonwood (Populus trichocarpa). Using 5-methyl-cytosine DNA immunoprecipitation followed by Illumina sequencing (MeDIP-seq), we mapped a total of 129,360,151 36- or 32-mer reads to the P. trichocarpa reference genome. We validated MeDIP-seq results by bisulfite sequencing, and compared methylation and gene expression using published microarray data. Qualitative DNA methylation differences among tissues were obvious on a chromosome scale. Methylated genes had lower expression than unmethylated genes, but genes with methylation in transcribed regions ("gene body methylation") had even lower expression than genes with promoter methylation. Promoter methylation was more frequent than gene body methylation in all tissues except male catkins. Male catkins differed in demethylation of particular transposable element categories, in level of gene body methylation, and in expression range of genes with methylated transcribed regions. Tissue-specific gene expression patterns were correlated with both gene body and promoter methylation. CONCLUSIONS: We found striking differences among tissues in methylation, which were apparent at the chromosomal scale and when genes and transposable elements were examined. In contrast to other studies in plants, gene body methylation had a more repressive effect on transcription than promoter methylation.
Asunto(s)
Cromosomas de las Plantas/genética , Citosina/metabolismo , Metilación de ADN , Regulación de la Expresión Génica de las Plantas , Populus/genética , Epigénesis Genética , Populus/metabolismo , Regiones Promotoras Genéticas , Análisis de SecuenciaRESUMEN
GENE-counter is a complete Perl-based computational pipeline for analyzing RNA-Sequencing (RNA-Seq) data for differential gene expression. In addition to its use in studying transcriptomes of eukaryotic model organisms, GENE-counter is applicable for prokaryotes and non-model organisms without an available genome reference sequence. For alignments, GENE-counter is configured for CASHX, Bowtie, and BWA, but an end user can use any Sequence Alignment/Map (SAM)-compliant program of preference. To analyze data for differential gene expression, GENE-counter can be run with any one of three statistics packages that are based on variations of the negative binomial distribution. The default method is a new and simple statistical test we developed based on an over-parameterized version of the negative binomial distribution. GENE-counter also includes three different methods for assessing differentially expressed features for enriched gene ontology (GO) terms. Results are transparent and data are systematically stored in a MySQL relational database to facilitate additional analyses as well as quality assessment. We used next generation sequencing to generate a small-scale RNA-Seq dataset derived from the heavily studied defense response of Arabidopsis thaliana and used GENE-counter to process the data. Collectively, the support from analysis of microarrays as well as the observed and substantial overlap in results from each of the three statistics packages demonstrates that GENE-counter is well suited for handling the unique characteristics of small sample sizes and high variability in gene counts.
Asunto(s)
Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia de ARN , Arabidopsis/genética , Arabidopsis/inmunología , Benchmarking , Secuencia Conservada , Interpretación Estadística de Datos , Bases de Datos Genéticas , Genómica , Análisis de Secuencia por Matrices de OligonucleótidosRESUMEN
The woodland strawberry, Fragaria vesca (2n = 2x = 14), is a versatile experimental plant system. This diminutive herbaceous perennial has a small genome (240 Mb), is amenable to genetic transformation and shares substantial sequence identity with the cultivated strawberry (Fragaria × ananassa) and other economically important rosaceous plants. Here we report the draft F. vesca genome, which was sequenced to ×39 coverage using second-generation technology, assembled de novo and then anchored to the genetic linkage map into seven pseudochromosomes. This diploid strawberry sequence lacks the large genome duplications seen in other rosids. Gene prediction modeling identified 34,809 genes, with most being supported by transcriptome mapping. Genes critical to valuable horticultural traits including flavor, nutritional value and flowering time were identified. Macrosyntenic relationships between Fragaria and Prunus predict a hypothetical ancestral Rosaceae genome that had nine chromosomes. New phylogenetic analysis of 154 protein-coding genes suggests that assignment of Populus to Malvidae, rather than Fabidae, is warranted.
Asunto(s)
Fragaria/genética , Genoma de Planta , Algoritmos , Cloroplastos/genética , Mapeo Cromosómico , Perfilación de la Expresión Génica , Genes de Plantas , Ligamiento Genético , Hibridación Fluorescente in Situ , Funciones de Verosimilitud , Modelos Genéticos , Filogenia , Secuencias Repetidas Terminales , Transcripción GenéticaRESUMEN
Deleterious mutation poses a serious threat to human health and the persistence of small populations. Although adaptive recovery from deleterious mutation has been well-characterized in prokaryotes, the evolutionary mechanisms by which multicellular eukaryotes recover from deleterious mutation remain unknown. We applied high-throughput DNA sequencing to characterize genomic divergence patterns associated with the adaptive recovery from deleterious mutation using a Caenorhabditis elegans recovery-line system. The C. elegans recovery lines were initiated from a low-fitness mutation-accumulation (MA) line progenitor and allowed to independently evolve in large populations (N â¼ 1000) for 60 generations. All lines rapidly regained levels of fitness similar to the wild-type (N2) MA line progenitor. Although there was a near-zero probability of a single mutation fixing due to genetic drift during the recovery experiment, we observed 28 fixed mutations. Cross-generational analysis showed that all mutations went from undetectable population-level frequencies to a fixed state in 10-20 generations. Many recovery-line mutations fixed at identical timepoints, suggesting that the mutations, if not beneficial, hitchhiked to fixation during selective sweep events observed in the recovery lines. No MA line mutation reversions were detected. Parallel mutation fixation was observed for two sites in two independent recovery lines. Analysis using a C. elegans interactome map revealed many predicted interactions between genes with recovery line-specific mutations and genes with previously accumulated MA line mutations. Our study suggests that recovery-line mutations identified in both coding and noncoding genomic regions might have beneficial effects associated with compensatory epistatic interactions.
Asunto(s)
Adaptación Biológica/genética , Caenorhabditis elegans/genética , Evolución Molecular , Mutación/genética , Selección Genética , Animales , Epistasis Genética/genética , Genética de Población , Análisis de Secuencia de ADNRESUMEN
To obtain greater insight into the molecular events underlying plant disease susceptibility, we studied transcriptome changes induced by a host-selective toxin of Pyrenophora tritici-repentis, Ptr ToxA (ToxA), on its host plant, wheat. Transcriptional profiling of ToxA-treated leaves of a ToxA-sensitive wheat cultivar was performed using the GeneChip Wheat Genome Array. An improved and up-to-date annotation of the wheat microarray was generated and a new tool for array data analysis (BRAT) was developed, and both are available for public use via a web-based interface. Our data indicate that massive transcriptional reprogramming occurs due to ToxA treatment, including cellular responses typically associated with defense. In addition, this study supports previous results indicating that ToxA-induced cell death is triggered by impairment of the photosynthetic machinery and accumulation of reactive oxygen species. Based on results of this study, we propose that ToxA acts as both an elicitor and a virulence factor.
Asunto(s)
Proteínas Fúngicas/farmacología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Micotoxinas/farmacología , Triticum/efectos de los fármacos , Triticum/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Triticum/genéticaRESUMEN
Knowledge of mutation processes is central to understanding virtually all evolutionary phenomena and the underlying nature of genetic disorders and cancers. However, the limitations of standard molecular mutation detection methods have historically precluded a genome-wide understanding of mutation rates and spectra in the nuclear genomes of multicellular organisms. We applied two high-throughput DNA sequencing technologies to identify and characterize hundreds of spontaneously arising base-substitution mutations in 10 Caenorhabditis elegans mutation-accumulation (MA)-line nuclear genomes. C. elegans mutation rate estimates were similar to previous calculations based on smaller numbers of mutations. Mutations were distributed uniformly within and among chromosomes and were not associated with recombination rate variation in the MA lines, suggesting that intragenomic variation in genetic hitchhiking and/or background selection are primarily responsible for the chromosomal distribution patterns of polymorphic nucleotides in C. elegans natural populations. A strong mutational bias from G/C to A/T nucleotides was detected in the MA lines, implicating oxidative DNA damage as a major endogenous mutagenic force in C. elegans. The observed mutational bias also suggests that the C. elegans nuclear genome cannot be at equilibrium because of mutation alone. Transversions dominate the spectrum of spontaneous mutations observed here, whereas transitions dominate patterns of allegedly neutral polymorphism in natural populations of C. elegans and many other animal species; this observation challenges the assumption that natural patterns of molecular variation in noncoding regions of the nuclear genome accurately reflect underlying mutation processes.
Asunto(s)
Caenorhabditis elegans/genética , Genoma de los Helmintos/genética , Estudio de Asociación del Genoma Completo/métodos , Mutación Puntual , Animales , Caenorhabditis elegans/clasificación , ADN de Helmintos/química , ADN de Helmintos/genética , Variación Genética , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN/métodos , Especificidad de la EspecieRESUMEN
The northwestern Sargasso Sea undergoes annual cycles of productivity with increased production in spring corresponding to periods of upwelling, and oligotrophy in summer and autumn, when the water column becomes highly stratified. The biological productivity of this region is reduced during stratified periods as a result of low concentrations of phosphorus and nitrogen in the euphotic zone. To better understand the mechanisms of microbial survival in this oligotrophic environment, we used capillary liquid chromatography (LC)-tandem mass spectrometry to detect microbial proteins in surface samples collected in September 2005. A total of 2215 peptides that mapped to 236 SAR11 proteins, 1911 peptides that mapped to 402 Prochlorococcus proteins and 2407 peptides that mapped to 404 Synechococcus proteins were detected. Mass spectra from SAR11 periplasmic substrate-binding proteins accounted for a disproportionately large fraction of the peptides detected, consistent with observations that these extremely small cells devote a large proportion of their volume to periplasm. Abundances were highest for periplasmic substrate-binding proteins for phosphate, amino acids, phosphonate, sugars and spermidine. Proteins implicated in the prevention of oxidative damage and protein refolding were also abundant. Our findings support the view that competition for multiple nutrients in oligotrophic systems is extreme, but nutrient flux is sufficient to sustain microbial community activity.
Asunto(s)
Proteínas Bacterianas/aislamiento & purificación , Proteínas de Transporte de Membrana/aislamiento & purificación , Proteoma/aislamiento & purificación , Agua de Mar/microbiología , Cromatografía Liquida , Océanos y Mares , Prochlorococcus/química , Agua de Mar/química , Synechococcus/química , Espectrometría de Masas en TándemRESUMEN
Sulphur is a universally required cell nutrient found in two amino acids and other small organic molecules. All aerobic marine bacteria are known to use assimilatory sulphate reduction to supply sulphur for biosynthesis, although many can assimilate sulphur from organic compounds that contain reduced sulphur atoms. An analysis of three complete 'Candidatus Pelagibacter ubique' genomes, and public ocean metagenomic data sets, suggested that members of the ubiquitous and abundant SAR11 alphaproteobacterial clade are deficient in assimilatory sulphate reduction genes. Here we show that SAR11 requires exogenous sources of reduced sulphur, such as methionine or 3-dimethylsulphoniopropionate (DMSP) for growth. Titrations of the algal osmolyte DMSP in seawater medium containing all other macronutrients in excess showed that 1.5 x 10(8) SAR11 cells are produced per nanomole of DMSP. Although it has been shown that other marine alphaproteobacteria use sulphur from DMSP in preference to sulphate, our results indicate that 'Cand. P. ubique' relies exclusively on reduced sulphur compounds that originate from other plankton.
Asunto(s)
Alphaproteobacteria/crecimiento & desarrollo , Alphaproteobacteria/metabolismo , Agua de Mar/microbiología , Azufre/metabolismo , Aerobiosis , Alphaproteobacteria/efectos de los fármacos , Alphaproteobacteria/genética , Biomasa , Eucariontes/metabolismo , Genoma Bacteriano/genética , Genómica , Metionina/metabolismo , Metionina/farmacología , Oxidación-Reducción , Plancton/metabolismo , Agua de Mar/química , Compuestos de Sulfonio/metabolismo , Compuestos de Sulfonio/farmacología , Azufre/farmacologíaRESUMEN
BACKGROUND: One objective of metagenomics is to reconstruct information about specific uncultured organisms from fragmentary environmental DNA sequences. We used the genome of an isolate of the marine alphaproteobacterium SAR11 ('Candidatus Pelagibacter ubique'; strain HTCC1062), obtained from the cold, productive Oregon coast, as a query sequence to study variation in SAR11 metagenome sequence data from the Sargasso Sea, a warm, oligotrophic ocean gyre. RESULTS: The average amino acid identity of SAR11 genes encoded by the metagenomic data to the query genome was only 71%, indicating significant evolutionary divergence between the coastal isolates and Sargasso Sea populations. However, an analysis of gene neighbors indicated that SAR11 genes in the Sargasso Sea metagenomic data match the gene order of the HTCC1062 genome in 96% of cases (> 85,000 observations), and that rearrangements are most frequent at predicted operon boundaries. There were no conserved examples of genes with known functions being found in the coastal isolates, but not the Sargasso Sea metagenomic data, or vice versa, suggesting that core regions of these diverse SAR11 genomes are relatively conserved in gene content. However, four hypervariable regions were observed, which may encode properties associated with variation in SAR11 ecotypes. The largest of these, HVR2, is a 48 kb region flanked by the sole 5S and 23S genes in the HTCC1062 genome, and mainly encodes genes that determine cell surface properties. A comparison of two closely related 'Candidatus Pelagibacter' genomes (HTCC1062 and HTCC1002) revealed a number of "gene indels" in core regions. Most of these were found to be polymorphic in the metagenomic data and showed evidence of purifying selection, suggesting that the same "polymorphic gene indels" are maintained in physically isolated SAR11 populations. CONCLUSION: These findings suggest that natural selection has conserved many core features of SAR11 genomes across broad oceanic scales, but significant variation was found associated with four hypervariable genome regions. The data also led to the hypothesis that some gene insertions and deletions might be polymorphisms, similar to allelic polymorphisms.
Asunto(s)
Alphaproteobacteria/genética , Variación Genética , Genoma Bacteriano , Biología Marina , Plancton/genética , Alphaproteobacteria/aislamiento & purificación , Alphaproteobacteria/metabolismo , Animales , Plancton/metabolismo , Agua de Mar/microbiologíaRESUMEN
Recombination is an important process in microbial evolution. Rates of recombination with extracellular DNA matter because models of microbial population structure are profoundly influenced by the degree to which recombination is occurring within the population. Low rates of recombination may be sufficient to ensure the lateral propagation of genes that have a high selective advantage without disrupting the clonal pattern of inheritance for other genes. High rates of recombination potentially can obscure clonal patterns, leading to linkage equilibrium, and give microbial populations a population genetic structure more akin to sexually interbreeding eukaryotic populations. We examined eight loci from nine strains of candidatus Pelagibacter ubique (SAR11), isolated from a single 2L niskin sample of natural seawater, for evidence of genetic recombination between strains. The Shimodaira-Hasegawa test revealed significant phylogenetic incongruence in seven of the genes, indicating that frequent recombination obscures phylogenetic signals from the linear inheritance of genes in this population. Statistical evidence for intragenic recombination was found for six loci. An informative sites matrix showed extensive evidence for a widespread breakdown of linkage disequilibrium. Although the mechanisms of genetic transfer in native SAR11 populations are unknown, we measured recombination rates, rho, that are much higher than point mutation rates, theta, as a source of genetic diversity in this clade. The eukaryotic model of species sharing a common pool of alleles is more apt for this SAR11 population than a strictly clonal model of inheritance in which allelic diversity is controlled by periodic selection.
Asunto(s)
Alphaproteobacteria/genética , Agua de Mar/microbiología , Alphaproteobacteria/aislamiento & purificación , Secuencia de Bases , Evolución Molecular , Variación Genética , Datos de Secuencia Molecular , Filogenia , Polimorfismo de Nucleótido Simple , ARN Ribosómico 16S/genética , Recombinación GenéticaRESUMEN
We examined the phylogenetic diversity of microbial communities associated with marine basalts, using over 300 publicly available 16S rDNA sequences and new sequence data from basalt enrichment cultures. Phylogenetic analysis provided support for 11 monophyletic clades originating from ocean crust (sediment, basalt and gabbro). Seven of the ocean crust clades (OCC) are bacterial, while the remaining four OCC are in the Marine Group I (MGI) Crenarchaeota. Most of the OCC were found at diverse geographic sites, suggesting that these microorganisms have cosmopolitan distributions. One OCC in the Crenarchaeota consisted of sequences derived entirely from basalts. The remaining OCC were found in both basalts and sediments. The MGI Crenarchaeota were observed in all studies where archaeal diversity was evaluated. These results demonstrate that basalts are occupied by cosmopolitan clades of microorganisms that are also found in marine sediments but are distinct from microorganisms found in other marine habitats, and that one OCC in the ubiquitous MGI Crenarchaeota clade may be an ecotype specifically adapted to basalt.