RESUMEN
BK polyomavirus (BKPyV) is a double-stranded DNA virus causing nephropathy, hemorrhagic cystitis, and urothelial cancer in transplant patients. The BKPyV-encoded capsid protein Vp1 and large T-antigen (LTag) are key targets of neutralizing antibodies and cytotoxic T-cells, respectively. Our single-center data suggested that variability in Vp1 and LTag may contribute to failing BKPyV-specific immune control and impact vaccine design. We, therefore, analyzed all available entries in GenBank (1516 VP1; 742 LTAG) and explored potential structural effects using computational approaches. BKPyV-genotype (gt)1 was found in 71.18% of entries, followed by BKPyV-gt4 (19.26%), BKPyV-gt2 (8.11%), and BKPyV-gt3 (1.45%), but rates differed according to country and specimen type. Vp1-mutations matched a serotype different than the assigned one or were serotype-independent in 43%, 18% affected more than one amino acid. Notable Vp1-mutations altered antibody-binding domains, interactions with sialic acid receptors, or were predicted to change conformation. LTag-sequences were more conserved, with only 16 mutations detectable in more than one entry and without significant effects on LTag-structure or interaction domains. However, LTag changes were predicted to affect HLA-class I presentation of immunodominant 9mers to cytotoxic T-cells. These global data strengthen single center observations and specifically our earlier findings revealing mutant 9mer epitopes conferring immune escape from HLA-I cytotoxic T cells. We conclude that variability of BKPyV-Vp1 and LTag may have important implications for diagnostic assays assessing BKPyV-specific immune control and for vaccine design. IMPORTANCE: Type and rate of amino acid variations in BKPyV may provide important insights into BKPyV diversity in human populations and an important step toward defining determinants of BKPyV-specific immunity needed to protect vulnerable patients from BKPyV diseases. Our analysis of BKPyV sequences obtained from human specimens reveals an unexpectedly high genetic variability for this double-stranded DNA virus that strongly relies on host cell DNA replication machinery with its proof reading and error correction mechanisms. BKPyV variability and immune escape should be taken into account when designing further approaches to antivirals, monoclonal antibodies, and vaccines for patients at risk of BKPyV diseases.
RESUMEN
BACKGROUND: High-level BK polyomavirus (BKPyV) replication in allogeneic hematopoietic cell transplantation (HCT) predicts failing immune control and BKPyV-associated hemorrhagic cystitis. METHODS: To identify molecular markers of BKPyV replication and disease, we scrutinized BKPyV DNA-loads in longitudinal urine and plasma pairs from 20 HCT patients using quantitative nucleic acid testing (QNAT), DNase-I treatment prior to QNAT, next-generation sequencing (NGS), and tested cell-mediated immunity. RESULTS: We found that larger QNAT amplicons led to under-quantification and false-negatives results (P < .001). DNase-I reduced urine and plasma BKPyV-loads by >90% (P < .001), indicating non-encapsidated BKPyV genomes. DNase-resistant urine BKPyV-loads remained infectious in cell culture. BKPyV genome fragmentation of ≤250 bp impaired NGS coverage of genetic variation using 1000-bp and 5000-bp amplicons. Conversely, 250-bp amplicons captured viral minority variants. We identified genotype-specific and genotype-independent changes in capsid Vp1 or T-antigen predicted to escape from antibody neutralization or cytotoxic CD8 T-cells, respectively. Genotype-specific changes in immunodominant 9mers were associated with reduced or absent CD8 T-cell responses. Thus, failure to control BKPyV replication in HCT Patients may involve insufficient genotype-specific cytotoxic CD8 T-cell responses, potentially predictable by low neutralizing antibodies as well as genotype-independent immune escape. CONCLUSIONS: Our results provide new insights for patient evaluation and for designing immune protection through neutralizing antibodies, adoptive T-cell therapy, or vaccines.
Asunto(s)
Virus BK , Trasplante de Células Madre Hematopoyéticas , Infecciones por Polyomavirus , Humanos , Virus BK/genética , Linfocitos T CD8-positivos , Anticuerpos NeutralizantesRESUMEN
In systemic lupus erythematosus, T cells display multiple abnormalities. They are abnormally activated, secrete pro-inflammatory cytokines, help B cells to generate pathogenic autoantibodies, and provoke the accumulation of autoreactive memory T cells. P140, a synthetic peptide evaluated in phase-III clinical trials for lupus, binds HSPA8/HSC70 chaperone protein. In vitro and in vivo, it interferes with hyperactivated chaperone-mediated autophagy, modifying overexpression of major histocompatibility complex class II molecules and antigen presentation to autoreactive T cells. Here, we show that in P140-treated lupus mice, abnormalities affecting T and B cells are no longer detectable in secondary lymphoid tissue and peripheral blood. Data indicate that P140 acts by depleting hyper-activated autoreactive T and B cells and restores normal immune homeostasis. Our findings suggest that P140 belongs to a new family of non-immunosuppressive immunoregulators that do not correct T and B cell abnormalities but rather contribute to the clearance of deleterious T and B cells.
Asunto(s)
Lupus Eritematoso Sistémico , Fragmentos de Péptidos , Animales , Presentación de Antígeno , Linfocitos B , Proteínas del Choque Térmico HSC70 , Ratones , Fragmentos de Péptidos/metabolismoRESUMEN
Naturally-occurring autoantibodies to certain components of autophagy processes have been described in a few autoimmune diseases, but their fine specificity, their relationships with clinical phenotypes, and their potential pathogenic functions remain elusive. Here, we explored IgG autoantibodies reacting with a panel of cytoplasmic endosomal/lysosomal antigens and individual heat-shock proteins, all of which share links to autophagy. Sera from autoimmune patients and from MRL/lpr and NZB/W lupus-prone mice reacted with the C-terminal residues of lysosome-associated membrane glycoprotein (LAMP)2A. No cross-reaction was observed with LAMP2B or LAMP2C variants, with dsDNA or mononucleosomes, or with heat-shock protein A8. Moreover, administering chromatography-purified LAMP2A autoantibodies to MRL/lpr mice accelerated mortality. Furthermore, flow cytometry revealed elevated cell-surface expression of LAMP2A on MRL/lpr B cells. These findings reveal the involvement of a new class of autoantibodies targeting the C-terminus of LAMP2A, a receptor for cytosolic proteins targeted for degradation via chaperone-mediated autophagy. These autoantibodies could affect the autophagy process, which is abnormally upregulated in lupus. The data presented support a novel connection between autophagy dysregulation, autoimmune processes and pathophysiology in lupus.
Asunto(s)
Antígenos/inmunología , Susceptibilidad a Enfermedades/inmunología , Lupus Eritematoso Sistémico/etiología , Lupus Eritematoso Sistémico/metabolismo , Lisosomas/inmunología , Animales , Autoanticuerpos/inmunología , Autoantígenos/inmunología , Autoinmunidad , Autofagia/inmunología , Biomarcadores , Estudios de Casos y Controles , Modelos Animales de Enfermedad , Endosomas/inmunología , Endosomas/metabolismo , Ensayo de Inmunoadsorción Enzimática , Proteínas de Choque Térmico/inmunología , Humanos , Inmunoglobulina G/inmunología , Lupus Eritematoso Sistémico/patología , Proteína 2 de la Membrana Asociada a los Lisosomas/inmunología , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Lisosomas/metabolismo , Ratones , Ratones Endogámicos MRL lpr , Péptidos/inmunologíaRESUMEN
BACKGROUND: BK polyomavirus (BKPyV) remains a significant cause of premature kidney transplant failure. In the absence of effective antivirals, current treatments rely on reducing immunosuppression to regain immune control over BKPyV replication. Increasing BKPyV-specific CD8 T cells correlate with clearance of BKPyV DNAemia in kidney transplant patients. We characterized a novel approach for expanding BKPyV-specific CD8 T cells in vitro using 27mer-long synthetic BKPyV peptides, different types of antigen-presenting cells, and CD4 T cells. METHODS: Langerhans cells and immature or mature monocyte-derived dendritic cells (Mo-DCs) were generated from peripheral blood mononuclear cells of healthy blood donors, pulsed with synthetic peptide pools consisting of 36 overlapping 27mers (27mP) or 180 15mers (15mP). BKPyV-specific CD8 T-cell responses were assessed by cytokine release assays using 15mP or immunodominant 9mers. RESULTS: BKPyV-specific CD8 T cells expanded using 27mP and required mature Mo-DCs (P = .0312) and CD4 T cells (P = .0156) for highest responses. The resulting BKPyV-specific CD8 T cells proliferated, secreted multiple cytokines including interferon γ and tumor necrosis factor α, and were functional (CD107a+/PD1-) and cytotoxic. CONCLUSIONS: Synthetic 27mP permit expanding BKPyV-specific CD8 T-cell responses when pulsing mature Mo-DCs in presence of CD4 T cells, suggesting novel and safe approaches to vaccination and adoptive T-cell therapies for patients before and after kidney transplantation.
Asunto(s)
Traslado Adoptivo , Virus BK , Linfocitos T CD8-positivos/inmunología , Infecciones por Polyomavirus , Citocinas/inmunología , Humanos , Leucocitos Mononucleares , Infecciones por Polyomavirus/inmunología , VacunaciónRESUMEN
Failing BK polyomavirus (BKPyV)-specific immune control is underlying onset and duration of BKPyV-replication and disease. We focused on BKPyV-specific CD8 T-cells as key effectors and characterized immunodominant 9mer epitopes in the viral large tumor-antigen (LTag). We investigated the variation of LTag-epitopes and their predicted effects on HLA-class 1 binding and T-cell activation. Available BKPyV sequences in the NCBI-nucleotide (N = 3263), and the NCBI protein database (N = 4189) were extracted (1368 sequences) and analyzed for non-synonymous aa-exchanges in LTag. Variant 9mer-epitopes were assessed for predicted changes in HLA-A and HLA-B-binding compared to immunodominant 9mer reference. We identified 159 non-synonymous aa-exchanges in immunodominant LTag-9mer T-cell epitopes reflecting different BKPyV-genotypes as well as genotype-independent variants altering HLA-A/HLA-B-binding scores. Decreased binding scores for HLA-A/HLA-B were found in 27/159 (17%). This included the immunodominant LPLMRKAYL affecting HLA-B*07:02-, HLA-B*08:01- and HLA-B*51:01-presentation. In two healthy BKPyV-seropositive HLA-B*07:02 blood donors, variant LSLMRKAYL showed reduced CD8 T-cell responses compared to LPLMRKAYL. Thus, despite LTag being highly conserved, aa-exchanges occur in immunodominant CD8 T-cell epitopes of BKPyV-genotypes as well as of genotypes -independent variants, which may contribute to genotype-dependent and genotype-independent failure of cellular immune control over BKPyV-replication. The data warrant epidemiological and immunological investigations in carefully designed clinical studies.
Asunto(s)
Presentación de Antígeno/inmunología , Antígenos Virales de Tumores/inmunología , Virus BK/inmunología , Linfocitos T CD8-positivos/inmunología , Epítopos de Linfocito T/inmunología , Antígenos HLA/inmunología , Epítopos Inmunodominantes/inmunología , Infecciones por Polyomavirus/inmunología , Variación Antigénica , Virus BK/genética , Biología Computacional/métodos , Mapeo Epitopo , Epítopos de Linfocito T/química , Humanos , Epítopos Inmunodominantes/química , Infecciones por Polyomavirus/virologíaRESUMEN
PURPOSE OF REVIEW: BK polyomavirus (BKPyV) has emerged as a significant cause of premature graft failure after kidney transplantation. Without effective antiviral drugs, treatment is based on reducing immunosuppression to regain immune control over BKPyV replication. The paradigm of high-level viruria/decoy cells, BKPyV-DNAemia, and proven nephropathy permits early interventions. Here, we review recent findings about BKPyV-specific antibody and T-cell responses and their potential role in risk stratification, immune monitoring, and therapy. RECENT FINDING: Kidney transplant recipients having low or undetectable BKPyV-specific IgG immunoglobulin G (IgG) are higher risk for developing BKPyV-DNAemia if the donor has high BKPyV-specific IgG. This observation has been extended to neutralizing antibodies. Immunosuppression, impaired activation, proliferation, and exhaustion of BKPyV-specific T cells may increase the risk of developing BKPyV-DNAemia and nephropathy. Clearance of BKPyV-DNAemia was correlated with high CD8 T cell responses to human leukocyte antigen (HLA)-types presenting BKPyV-encoded immunodominant 9mers. For clinical translation, these data need to be assessed in appropriately designed clinical studies, as outlined in recent guidelines on BKPyV in kidney transplantation. SUMMARY: Evaluation of BKPyV-specific immune responses in recipient and donor may help to stratify the risk of BKPyV-DNAemia, nephropathy, and graft loss. Future efforts need to evaluate clinical translation, vaccines, and immunotherapy to control BKPyV replication.
Asunto(s)
Anticuerpos Antivirales/inmunología , Virus BK/inmunología , Interacciones Huésped-Patógeno/inmunología , Trasplante de Riñón/efectos adversos , Infecciones por Polyomavirus/diagnóstico , Infecciones por Polyomavirus/etiología , Linfocitos T/inmunología , Especificidad de Anticuerpos/inmunología , Humanos , Huésped Inmunocomprometido , Terapia de Inmunosupresión/efectos adversos , Control de Infecciones , Infecciones por Polyomavirus/metabolismo , Infecciones por Polyomavirus/terapia , Linfocitos T/metabolismo , Receptores de TrasplantesRESUMEN
OBJECTIVE: Phosphopeptide P140 (Lupuzor) is an inhibitor of autophagy currently being evaluated in late-stage clinical trials for the treatment of lupus. This study was undertaken to investigate the effect of P140 ex vivo on human T and B cells. METHODS: Human B cells, T cells, and dendritic cells were analyzed by flow cytometry and cellular assays. The expression of autophagy markers was evaluated by immunoblotting and flow cytometry. The levels of B cell receptor (BCR) signaling markers and HLA molecules were assessed by flow cytometry. Toll-like receptor ligands were screened using an assay with transfected HEK 293 cells. P140 cell entry and trafficking were measured by immunofluorescence in the presence of various inhibitors of endosomal pathways. RESULTS: As was previously observed after intravenous injection of the peptide in a mouse model of lupus, P140 entered human B cells by a clathrin coat-dependent endocytosis process and homed into lysosomes. The peptide displayed no direct effect on BCR signaling of memory, naive mature, transitional, and B1 cells. However, it strongly reduced the overexpression of HLA class II molecules on lupus B cells that were acting as antigen-presenting cells, down-regulated the maturation and differentiation of B cells into plasma cells, and decreased IgG secretion. CONCLUSION: These findings show that P140 down-regulates HLA class II overexpression in human lupus B cells, and also that P140 hampers the differentiation of B cells into autoantibody-secreting plasma cells, likely due to the resulting lack of T cell signaling and activation. This mechanism appears to switch off the downstream events leading to secretion of pathogenic autoantibodies, thus explaining the highly promising results obtained in clinical trials of P140 (Lupuzor) for the treatment of lupus.
Asunto(s)
Linfocitos B/fisiología , Diferenciación Celular/efectos de los fármacos , Antígenos de Histocompatibilidad Clase II/metabolismo , Fragmentos de Péptidos/farmacología , Linfocitos T/fisiología , Autofagia/efectos de los fármacos , Células HEK293 , Humanos , Lupus Eritematoso Sistémico/tratamiento farmacológico , Lupus Eritematoso Sistémico/inmunología , Activación de Linfocitos/efectos de los fármacosRESUMEN
Autophagy is a tightly regulated mechanism that allows cells to renew themselves through the lysosomal degradation of proteins, which are misfolded or produced in excess, and of damaged organelles. In the context of immunity, recent research has specially attempted to clarify its roles in infection, inflammation and autoimmunity. Autophagy has emerged as a spotlight in several molecular pathways and trafficking events that participate to innate and adaptive immunity. Deregulation of autophagy has been associated to several autoimmune diseases, in particular to systemic lupus erythematosus. Nowadays, however, experimental data on the implication of autophagy in animal models of autoimmunity or patients remain limited. In our investigations, we use Murphy Roths Large (MRL)/lymphoproliferation (lpr) lupus-prone mice as a mouse model for lupus and secondary Sjögren's syndrome, and, herein, we describe methods applied routinely to analyze different autophagic pathways in different lymphoid organs and tissues (spleen, lymph nodes, salivary glands). We also depict some techniques used to analyze autophagy in lupus patient's blood samples. These methods can be adapted to the analysis of autophagy in other mouse models of autoinflammatory diseases. The understanding of autophagy implication in autoimmune diseases could prove to be very useful for developing novel immunomodulatory strategies. Our attention should be focused on the fact that autophagy processes are interconnected and that distinct pathways can be independently hyper-activated or downregulated in distinct organs and tissues of the same individual.