Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Mol Syndromol ; 14(4): 303-309, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37589028

RESUMEN

Background: Pallister-Killian syndrome (PKS) is typically recognized by its features that include developmental delay, seizures, sparse temporal hair, and facial dysmorphisms. PKS is most frequently caused by mosaic supernumerary isochromosome 12p. Case Presentation: Here, we report a patient with PKS who was subsequently diagnosed with Burkitt lymphoma. Following the successful treatment of lymphoma, this patient demonstrated very mild intellectual disability despite the diagnosis of PKS, which is usually associated with severe developmental delay. Discussion: This is the first reported patient with PKS and a hematologic malignancy. Although there is no significant reported association of tetrasomy 12p with cancer, the co-occurrence of two rare findings in this patient suggests a potential relationship. The localization of AICDA, a gene for which overexpression has been implicated in promoting t(8;14) noted in our patient's lymphoma, raises a potential mechanism of pathogenesis. In addition, this case indicates that children with PKS can demonstrate near-normal cognitive development.

2.
Am J Med Genet A ; 191(4): 977-982, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36610046

RESUMEN

Fibular aplasia, tibial campomelia, and oligosyndactyly (FATCO) syndrome (MIM 246570) is a rare disorder characterized by specific skeletal findings (fibular aplasia, shortened or bowed tibia, and oligosyndactyly of the foot and/or hand). Typically, no other anomalies, craniofacial dysmorphism, or developmental delays are associated. Here we report three unrelated individuals with limb anomalies consistent with FATCO syndrome who have been followed clinically for 5 years. Genetic testing of previously reported individuals with FATCO syndrome has not revealed a genetic diagnosis. However, no broader sequencing approaches have been reported. We describe the results of the three individuals with FATCO syndrome from exome and genome sequencing, all of which was nondiagnostic. Our study suggests that FATCO syndrome is not the result of a simple monogenic etiology.


Asunto(s)
Deformidades Congénitas del Pie , Sindactilia , Humanos , Tibia/anomalías , Sindactilia/genética , Deformidades Congénitas del Pie/diagnóstico , Síndrome , Genómica
3.
J Mol Diagn ; 24(3): 274-286, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35065284

RESUMEN

Clinical exome sequencing (CES) aids in the diagnosis of rare genetic disorders. Herein, we report the molecular diagnostic yield and spectrum of genetic alterations contributing to disease in 700 pediatric cases analyzed at the Children's Hospital of Philadelphia. The overall diagnostic yield was 23%, with three cases having more than one molecular diagnosis and 2.6% having secondary/additional findings. A candidate gene finding was reported in another 8.4% of cases. The clinical indications with the highest diagnostic yield were neurodevelopmental disorders (including seizures), whereas immune- and oncology-related indications were negatively associated with molecular diagnosis. The rapid expansion of knowledge regarding the genome's role in human disease necessitates reanalysis of CES samples. To capture these new discoveries, a subset of cases (n = 240) underwent reanalysis, with an increase in diagnostic yield. We describe our experience reporting CES results in a pediatric setting, including reporting of secondary findings, reporting newly discovered genetic conditions, and revisiting negative test results. Finally, we highlight the challenges associated with implementing critical updates to the CES workflow. Although these updates are necessary, they demand an investment of time and resources from the laboratory. In summary, these data demonstrate the clinical utility of exome sequencing and reanalysis, while highlighting the critical considerations for continuous improvement of a CES test in a clinical laboratory.


Asunto(s)
Exoma , Patología Molecular , Niño , Exoma/genética , Humanos , Mutación , Enfermedades Raras/genética , Estudios Retrospectivos , Secuenciación del Exoma/métodos
4.
Clin Genet ; 100(2): 187-200, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33955014

RESUMEN

Mutations affecting the transcriptional regulator Ankyrin Repeat Domain 11 (ANKRD11) are mainly associated with the multisystem developmental disorder known as KBG syndrome, but have also been identified in individuals with Cornelia de Lange syndrome (CdLS) and other developmental disorders caused by variants affecting different chromatin regulators. The extensive functional overlap of these proteins results in shared phenotypical features, which complicate the assessment of the clinical diagnosis. Additionally, re-evaluation of individuals at a later age occasionally reveals that the initial phenotype has evolved toward clinical features more reminiscent of a developmental disorder different from the one that was initially diagnosed. For this reason, variants in ANKRD11 can be ascribed to a broader class of disorders that fall within the category of the so-called chromatinopathies. In this work, we report on the clinical characterization of 23 individuals with variants in ANKRD11. The subjects present primarily with developmental delay, intellectual disability and dysmorphic features, and all but two received an initial clinical diagnosis of either KBG syndrome or CdLS. The number and the severity of the clinical signs are overlapping but variable and result in a broad spectrum of phenotypes, which could be partially accounted for by the presence of additional molecular diagnoses and distinct pathogenic mechanisms.


Asunto(s)
Anomalías Múltiples/etiología , Enfermedades del Desarrollo Óseo/etiología , Discapacidad Intelectual/etiología , Proteínas Represoras/genética , Anomalías Dentarias/etiología , Anomalías Múltiples/genética , Adolescente , Enfermedades del Desarrollo Óseo/genética , Niño , Preescolar , Cara/anomalías , Facies , Femenino , Humanos , Discapacidad Intelectual/genética , Masculino , Mutación , Linaje , Anomalías Dentarias/genética , Adulto Joven
5.
Pediatrics ; 145(3)2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32102930

RESUMEN

Next-generation sequencing has revolutionized the diagnostic process, making broadscale testing affordable and applicable to almost all specialties; however, there remain several challenges in its widespread implementation. Barriers such as lack of infrastructure or expertise within local health systems and complex result interpretation or counseling make it harder for frontline clinicians to incorporate genomic testing in their existing workflow. The general population is more informed and interested in pursuing genetic testing, and this has been coupled with the increasing accessibility of direct-to-consumer testing. As a result of these changes, primary care physicians and nongenetics specialty providers find themselves seeing patients for whom genetic testing would be beneficial but managing genetic test results that are out of their scope of practice. In this report, we present a practical and centralized approach to providing genomic services through an independent, enterprise-wide clinical service model. We present 4 years of clinical experience, with >3400 referrals, toward designing and implementing the clinical service, maximizing resources, identifying barriers, and improving patient care. We provide a framework that can be implemented at other institutions to support and integrate genomic services across the enterprise.


Asunto(s)
Atención a la Salud/organización & administración , Pruebas Genéticas , Pediatría , Niño , Genómica , Humanos
6.
J Mol Diagn ; 21(1): 38-48, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30577886

RESUMEN

Clinical exome sequencing (CES) has a reported diagnostic yield of 20% to 30% for most clinical indications. The ongoing discovery of novel gene-disease and variant-disease associations are expected to increase the diagnostic yield of CES. Performing systematic reanalysis of previously nondiagnostic CES samples represents a significant challenge for clinical laboratories. Here, we present the results of a novel automated reanalysis methodology applied to 300 CES samples initially analyzed between June 2014 and September 2016. Application of our reanalysis methodology reduced reanalysis variant analysis burden by >93% and correctly captured 70 of 70 previously identified diagnostic variants among 60 samples with previously identified diagnoses. Notably, reanalysis of 240 initially nondiagnostic samples using information available on July 1, 2017, revealed 38 novel diagnoses, representing a 15.8% increase in diagnostic yield. Modeling monthly iterative reanalysis of 240 nondiagnostic samples revealed a diagnostic rate of 0.57% of samples per month. Modeling the workload required for monthly iterative reanalysis of nondiagnostic samples revealed a variant analysis burden of approximately 5 variants/month for proband-only and approximately 0.5 variants/month for trio samples. Approximately 45% of samples required evaluation during each monthly interval, and 61.3% of samples were reevaluated across three consecutive reanalyses. In sum, automated reanalysis methods can facilitate efficient reevaluation of nondiagnostic samples using up-to-date literature and can provide significant value to clinical laboratories.


Asunto(s)
Secuenciación del Exoma/métodos , ADN/genética , Exoma , Femenino , Pruebas Genéticas/métodos , Variación Genética , Humanos , Masculino
8.
Genet Med ; 20(12): 1663-1676, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29907799

RESUMEN

PURPOSE: Hearing loss (HL) is the most common sensory disorder in children. Prompt molecular diagnosis may guide screening and management, especially in syndromic cases when HL is the single presenting feature. Exome sequencing (ES) is an appealing diagnostic tool for HL as the genetic causes are highly heterogeneous. METHODS: ES was performed on a prospective cohort of 43 probands with HL. Sequence data were analyzed for primary and secondary findings. Capture and coverage analysis was performed for genes and variants associated with HL. RESULTS: The diagnostic rate using ES was 37.2%, compared with 15.8% for the clinical HL panel. Secondary findings were discovered in three patients. For 247 genes associated with HL, 94.7% of the exons were targeted for capture and 81.7% of these exons were covered at 20× or greater. Further analysis of 454 randomly selected HL-associated variants showed that 89% were targeted for capture and 75% were covered at a read depth of at least 20×. CONCLUSION: ES has an improved yield compared with clinical testing and may capture diagnoses not initially considered due to subtle clinical phenotypes. Technical challenges were identified, including inadequate capture and coverage of HL genes. Additional considerations of ES include secondary findings, cost, and turnaround time.


Asunto(s)
Secuenciación del Exoma , Pérdida Auditiva/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Patología Molecular , Preescolar , Exoma/genética , Femenino , Pérdida Auditiva/diagnóstico , Pérdida Auditiva/patología , Humanos , Lactante , Recién Nacido , Masculino , Mutación , Fenotipo
9.
Genet Med ; 20(12): 1600-1608, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29595809

RESUMEN

PURPOSE: Hereditary hearing loss is highly heterogeneous. To keep up with rapidly emerging disease-causing genes, we developed the AUDIOME test for nonsyndromic hearing loss (NSHL) using an exome sequencing (ES) platform and targeted analysis for the curated genes. METHODS: A tiered strategy was implemented for this test. Tier 1 includes combined Sanger and targeted deletion analyses of the two most common NSHL genes and two mitochondrial genes. Nondiagnostic tier 1 cases are subjected to ES and array followed by targeted analysis of the remaining AUDIOME genes. RESULTS: ES resulted in good coverage of the selected genes with 98.24% of targeted bases at >15 ×. A fill-in strategy was developed for the poorly covered regions, which generally fell within GC-rich or highly homologous regions. Prospective testing of 33 patients with NSHL revealed a diagnosis in 11 (33%) and a possible diagnosis in 8 cases (24.2%). Among those, 10 individuals had variants in tier 1 genes. The ES data in the remaining nondiagnostic cases are readily available for further analysis. CONCLUSION: The tiered and ES-based test provides an efficient and cost-effective diagnostic strategy for NSHL, with the potential to reflex to full exome to identify causal changes outside of the AUDIOME test.


Asunto(s)
Predisposición Genética a la Enfermedad , Pérdida Auditiva Sensorineural/diagnóstico , Pérdida Auditiva Sensorineural/genética , Patología Molecular , Exoma/genética , Femenino , Pérdida Auditiva Sensorineural/fisiopatología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Mutación , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia de ADN , Secuenciación del Exoma
10.
Genet Med ; 20(3): 329-336, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29389922

RESUMEN

PurposeThe objective of this study was to assess the ability of our laboratory's exome-sequencing test to detect known and novel sequence variants and identify the critical factors influencing the interpretation of a clinical exome test.MethodsWe developed a two-tiered validation strategy: (i) a method-based approach that assessed the ability of our exome test to detect known variants using a reference HapMap sample, and (ii) an interpretation-based approach that assessed our relative ability to identify and interpret disease-causing variants, by analyzing and comparing the results of 19 randomly selected patients previously tested by external laboratories.ResultsWe demonstrate that this approach is reproducible with >99% analytical sensitivity and specificity for single-nucleotide variants and indels <10 bp. Our findings were concordant with the reference laboratories in 84% of cases. A new molecular diagnosis was applied to three cases, including discovery of two novel candidate genes.ConclusionWe provide an assessment of critical areas that influence interpretation of an exome test, including comprehensive phenotype capture, assessment of clinical overlap, availability of parental data, and the addressing of limitations in database updates. These results can be used to inform improvements in phenotype-driven interpretation of medical exomes in clinical and research settings.


Asunto(s)
Exactitud de los Datos , Exoma , Pruebas Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN , Biología Computacional/métodos , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Pruebas Genéticas/métodos , Pruebas Genéticas/normas , Genómica/métodos , Genómica/normas , Humanos , Mutación INDEL , Polimorfismo de Nucleótido Simple , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
12.
Am J Hum Genet ; 101(1): 139-148, 2017 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-28686853

RESUMEN

We report 15 individuals with de novo pathogenic variants in WDR26. Eleven of the individuals carry loss-of-function mutations, and four harbor missense substitutions. These 15 individuals comprise ten females and five males, and all have intellectual disability with delayed speech, a history of febrile and/or non-febrile seizures, and a wide-based, spastic, and/or stiff-legged gait. These subjects share a set of common facial features that include a prominent maxilla and upper lip that readily reveal the upper gingiva, widely spaced teeth, and a broad nasal tip. Together, these features comprise a recognizable facial phenotype. We compared these features with those of chromosome 1q41q42 microdeletion syndrome, which typically contains WDR26, and noted that clinical features are consistent between the two subsets, suggesting that haploinsufficiency of WDR26 contributes to the pathology of 1q41q42 microdeletion syndrome. Consistent with this, WDR26 loss-of-function single-nucleotide mutations identified in these subjects lead to nonsense-mediated decay with subsequent reduction of RNA expression and protein levels. We derived a structural model of WDR26 and note that missense variants identified in these individuals localize to highly conserved residues of this WD-40-repeat-containing protein. Given that WDR26 mutations have been identified in ∼1 in 2,000 of subjects in our clinical cohorts and that WDR26 might be poorly annotated in exome variant-interpretation pipelines, we would anticipate that this disorder could be more common than currently appreciated.


Asunto(s)
Facies , Marcha/genética , Haploinsuficiencia/genética , Discapacidad Intelectual/genética , Proteínas/genética , Convulsiones/genética , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Secuencia de Bases , Preescolar , Deleción Cromosómica , Femenino , Crecimiento y Desarrollo/genética , Humanos , Discapacidad Intelectual/complicaciones , Masculino , Mutación/genética , Proteínas/química , Estabilidad del ARN/genética , Convulsiones/complicaciones , Síndrome
13.
Neurol Genet ; 3(1): e130, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28180185

RESUMEN

OBJECTIVE: ATAD1 encodes Thorase, a mediator of α-amino-3-hydroxy-5-methylisoxazole-4-proprionate (AMPA) receptor recycling; in this work, we characterized the phenotype resulting from ATAD1 mutations and developed a targeted therapy in both mice and humans. METHODS: Using exome sequencing, we identified a novel ATAD1 mutation (p.E276X) as the etiology of a devastating neurologic disorder characterized by hypertonia, seizures, and death in a consanguineous family. We postulated that pathogenesis was a result of excessive AMPA receptor activity and designed a targeted therapeutic approach using perampanel, an AMPA-receptor antagonist. RESULTS: Perampanel therapy in ATAD1 knockout mice reversed behavioral defects, normalized brain MRI abnormalities, prevented seizures, and prolonged survival. The ATAD1 patients treated with perampanel showed improvement in hypertonicity and resolution of seizures. CONCLUSIONS: This work demonstrates that identification of novel monogenic neurologic disorders and observation of response to targeted therapeutics can provide important insights into human nervous system functioning.

15.
Am J Med Genet A ; 170(10): 2523-30, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27480936

RESUMEN

Hearing loss is a relatively common condition in children, occurring in approximately 2 out of every 1,000 births with approximately 50% of reported diagnoses having a primary genetic etiology. Given the prevalence and genetic component of hearing loss, coupled with a trend toward early diagnosis with the institution of universal newborn hearing screening, The Genetics of Hearing Loss Clinic was established at The Children's Hospital of Philadelphia to manage the diagnosis, testing, and genetic counseling for individuals and families. This paper described a cohort of 660 individuals with a diagnosis of hearing loss evaluated between July 2008 and July 2015 in the Genetics of Hearing Loss Clinic. To elucidate the cause of hearing loss in this cohort for better management and prognostication, testing included single nucleotide polymorphism chromosomal microarray, hearing loss next generation sequencing panel, and additional clinical tests inclusive of thyroid and renal function studies, temporal bone magnetic resonance imaging, and electrocardiogram. Of those evaluated, most had bilateral sensorineural hearing loss, occurring in 489/660 (74%). Additionally, 612/660 (93%) of patients presented with a nonsyndromic form of hearing loss (no other observed clinical findings at the time of exam), of which pathogenic mutations in GJB2 were most prevalent. Of the individuals with syndromic manifestations (48/660), Usher and Waardenburg syndrome were most commonly observed. A family history of hearing loss (first degree relative) was present in 12.6% of families with available information. Through molecular analyses, clinical examination, and laboratory testing, a definitive etiologic diagnosis was established in 157/660 (23.8%) of individuals. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Pérdida Auditiva/diagnóstico , Pérdida Auditiva/epidemiología , Adolescente , Niño , Preescolar , Conexinas/genética , Manejo de la Enfermedad , Electrocardiografía , Femenino , Asesoramiento Genético , Pruebas Genéticas , Genotipo , Pérdida Auditiva/genética , Humanos , Lactante , Recién Nacido , Riñón/anomalías , Imagen por Resonancia Magnética , Masculino , Mutación , Evaluación de Resultado en la Atención de Salud , Vigilancia de la Población , Prevalencia , Síndrome , Hueso Temporal/diagnóstico por imagen , Hueso Temporal/patología , Glándula Tiroides/anomalías
16.
Genet Med ; 18(11): 1075-1084, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27171546

RESUMEN

The introduction of diagnostic clinical genome and exome sequencing (CGES) is changing the scope of practice for clinical geneticists. Many large institutions are making a significant investment in infrastructure and technology, allowing clinicians to access CGES, especially as health-care coverage begins to extend to clinically indicated genomic sequencing-based tests. Translating and realizing the comprehensive clinical benefits of genomic medicine remain a key challenge for the current and future care of patients. With the increasing application of CGES, it is necessary for geneticists and other health-care providers to understand its benefits and limitations in order to interpret the clinical relevance of genomic variants identified in the context of health and disease. New, collaborative working relationships with specialists across diverse disciplines (e.g., clinicians, laboratorians, bioinformaticians) will undoubtedly be key attributes of the future practice of clinical genetics and may serve as an example for other specialties in medicine. These new skills and relationships will also inform the development of the future model of clinical genetics training curricula. To address the evolving role of the clinical geneticist in the rapidly changing climate of genomic medicine, two Clinical Genetics Think Tank meetings were held that brought together physicians, laboratorians, scientists, genetic counselors, trainees, and patients with experience in clinical genetics, genetic diagnostics, and genetics education. This article provides recommendations that will guide the integration of genomics into clinical practice.Genet Med 18 11, 1075-1084.


Asunto(s)
Asesoramiento Genético/tendencias , Genética Médica/tendencias , Genoma Humano/genética , Genómica , Exoma/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos
17.
Am J Med Genet C Semin Med Genet ; 172(2): 109-16, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27125467

RESUMEN

Distal deletion of the long arm of chromosome 10 with breakpoints mapped at 10q26 is a well-recognized contiguous genomic disorder. A wide spectrum of clinical findings is seen in affected individuals and the common clinical features include craniofacial dysmorphia, developmental delay, intellectual disability, hypotonia, cardiovascular defects, and urogenital malformations. We report herein on a male patient with a 5.5 Mb interstitial deletion of 10q26.11q2613 and compare his clinical presentation to previously reported cases. Apart from characteristic phenotypes seen in 10q26 deletion syndrome, he presents with colobomas and left ventricle enlargement. These are cardiovascular and ophthalmological findings that have not been described in prior cases. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 10/genética , Coloboma/genética , Pérdida Auditiva/genética , Hipertrofia Ventricular Izquierda/genética , Anomalías Múltiples , Humanos , Masculino , Fenotipo
18.
Hum Genomics ; 9: 15, 2015 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-26187847

RESUMEN

BACKGROUND: Conditions associated with sudden cardiac arrest/death (SCA/D) in youth often have a genetic etiology. While SCA/D is uncommon, a pro-active family screening approach may identify these inherited structural and electrical abnormalities prior to symptomatic events and allow appropriate surveillance and treatment. This study investigated the diagnostic utility of exome sequencing (ES) by evaluating the capture and coverage of genes related to SCA/D. METHODS: Samples from 102 individuals (13 with known molecular etiologies for SCA/D, 30 individuals without known molecular etiologies for SCA/D and 59 with other conditions) were analyzed following exome capture and sequencing at an average read depth of 100X. Reads were mapped to human genome GRCh37 using Novoalign, and post-processing and analysis was done using Picard and GATK. A total of 103 genes (2,190 exons) related to SCA/D were used as a primary filter. An additional 100 random variants within the targeted genes associated with SCA/D were also selected and evaluated for depth of sequencing and coverage. Although the primary objective was to evaluate the adequacy of depth of sequencing and coverage of targeted SCA/D genes and not for primary diagnosis, all patients who had SCA/D (known or unknown molecular etiologies) were evaluated with the project's variant analysis pipeline to determine if the molecular etiologies could be successfully identified. RESULTS: The majority of exons (97.6 %) were captured and fully covered on average at minimum of 20x sequencing depth. The proportion of unique genomic positions reported within poorly covered exons remained small (4 %). Exonic regions with less coverage reflect the need to enrich these areas to improve coverage. Despite limitations in coverage, we identified 100 % of cases with a prior known molecular etiology for SCA/D, and analysis of an additional 30 individuals with SCA/D but no known molecular etiology revealed a diagnostic answer in 5/30 (17 %). We also demonstrated 95 % of 100 randomly selected reported variants within our targeted genes would have been picked up on ES based on our coverage analysis. CONCLUSIONS: ES is a helpful clinical diagnostic tool for SCA/D given its potential to successfully identify a molecular diagnosis, but clinicians should be aware of limitations of available platforms from technical and diagnostic perspectives.


Asunto(s)
Muerte Súbita Cardíaca , Exoma/genética , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Adolescente , Alelos , Niño , Genoma Humano , Humanos , Análisis de Secuencia de ADN , Adulto Joven
19.
Eur J Hum Genet ; 23(11): 1473-81, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25944381

RESUMEN

Dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 1 A (DYRK1A ) is a highly conserved gene located in the Down syndrome critical region. It has an important role in early development and regulation of neuronal proliferation. Microdeletions of chromosome 21q22.12q22.3 that include DYRK1A (21q22.13) are rare and only a few pathogenic single-nucleotide variants (SNVs) in the DYRK1A gene have been described, so as of yet, the landscape of DYRK1A disruptions and their associated phenotype has not been fully explored. We have identified 14 individuals with de novo heterozygous variants of DYRK1A; five with microdeletions, three with small insertions or deletions (INDELs) and six with deleterious SNVs. The analysis of our cohort and comparison with published cases reveals that phenotypes are consistent among individuals with the 21q22.12q22.3 microdeletion and those with translocation, SNVs, or INDELs within DYRK1A. All individuals shared congenital microcephaly at birth, intellectual disability, developmental delay, severe speech impairment, short stature, and distinct facial features. The severity of the microcephaly varied from -2 SD to -5 SD. Seizures, structural brain abnormalities, eye defects, ataxia/broad-based gait, intrauterine growth restriction, minor skeletal abnormalities, and feeding difficulties were present in two-thirds of all affected individuals. Our study demonstrates that haploinsufficiency of DYRK1A results in a new recognizable syndrome, which should be considered in individuals with Angelman syndrome-like features and distinct facial features. Our report represents the largest cohort of individuals with DYRK1A disruptions to date, and is the first attempt to define consistent genotype-phenotype correlations among subjects with 21q22.13 microdeletions and DYRK1A SNVs or small INDELs.


Asunto(s)
Síndrome de Down/genética , Discapacidad Intelectual/genética , Microcefalia/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Anomalías Múltiples/genética , Anomalías Múltiples/fisiopatología , Deleción Cromosómica , Síndrome de Down/patología , Facies , Femenino , Haploinsuficiencia , Humanos , Discapacidad Intelectual/fisiopatología , Masculino , Microcefalia/fisiopatología , Fenotipo , Polimorfismo de Nucleótido Simple , Quinasas DyrK
20.
Am J Med Genet A ; 167(6): 1268-74, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25900123

RESUMEN

Pallister-Killian syndrome (PKS) is a multi-system developmental disorder caused by tetrasomy 12p that exhibits tissue-limited mosaicism. Probands with PKS often demonstrate a unique growth profile consisting of macrosomia at birth with deceleration of growth postnatally. We have previously demonstrated that cultured skin fibroblasts from PKS probands have significantly elevated expression of insulin-like growth factor binding protein-2 (IGFBP2). To further evaluate the role of IGFBP2 in PKS, the amount of IGFBP2 secreted from cultured skin fibroblast cell lines and serum IGFBP2 levels were measured in probands with PKS. Approximately 60% of PKS fibroblast cell lines secreted higher levels of IGFBP2 compared to control fibroblasts, although the remaining 40% of PKS samples produced comparable level of IGFBP2 to that of control fibroblasts. Serum IGFBP2 levels were also measured in PKS probands and were elevated in 40% of PKS probands. PKS probands with elevated IGFBP2 manifested with severe postnatal growth retardation. IGFBPs are the family of related proteins that bind IGFs with high affinity and are typically thought to attenuate IGF action. We suggest that elevated IGFBP2 levels might play a role in the growth retardation phenotype of PKS.


Asunto(s)
Trastornos de los Cromosomas/genética , Discapacidades del Desarrollo/genética , Fibroblastos/metabolismo , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Mosaicismo , Estudios de Casos y Controles , Línea Celular , Niño , Preescolar , Trastornos de los Cromosomas/sangre , Trastornos de los Cromosomas/patología , Cromosomas Humanos Par 12/genética , Metilación de ADN , Discapacidades del Desarrollo/sangre , Discapacidades del Desarrollo/patología , Femenino , Fibroblastos/patología , Regulación de la Expresión Génica , Humanos , Hibridación Fluorescente in Situ , Lactante , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/sangre , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Cariotipificación , Masculino , Fenotipo , Regiones Promotoras Genéticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...