Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(19)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37834072

RESUMEN

Major depressive disorder (MDD) has a lifetime prevalence of approximately 10% and is one of the most common diseases worldwide. Although many pathogenetic mechanisms of MDD have been proposed, molecular details and a unifying hypothesis of the pathogenesis of MDD remain to be defined. Here, we investigated whether tyrosine nitrosylation, which is caused by reaction of the C-atom 3 of the tyrosine phenol ring with peroxynitrate (ONOO-), plays a role in experimental MDD, because tyrosine nitrosylation may affect many cell functions altered in MDD. To this end, we induced stress through glucocorticoid application or chronic environmental unpredictable stress and determined tyrosine nitrosylation in the hippocampus through immuno-staining and ELISA. The role of catalases and peroxidases for tyrosine nitrosylation was measured using enzyme assays. We show that glucocorticoid- and chronic unpredictable environmental stress induced tyrosine nitrosylation in the hippocampus. Long-term treatment of stressed mice with the classical antidepressants amitriptyline or fluoxetine prevented tyrosine nitrosylation. Tyrosine nitrosylation was also prevented through i.v. application of anti-ceramide antibodies or recombinant ceramidase to neutralize or degrade, respectively, blood plasma ceramide that has been recently shown to induce experimental MDD. Finally, the application of phosphatidic acid, previously shown to be reduced in the hippocampus upon stress, also reverted stress-induced tyrosine nitrosylation. The inhibition of tyrosine nitrosylation by interfering with the formation of NO radicals at least partly restored normal behavior in stressed mice. These data suggest that tyrosine nitrosylation might contribute to the pathogenesis of MDD and targeting this process might contribute to the treatment of MDD.


Asunto(s)
Trastorno Depresivo Mayor , Animales , Ratones , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Mayor/etiología , Trastorno Depresivo Mayor/metabolismo , Glucocorticoides/metabolismo , Tirosina/metabolismo , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Fluoxetina/farmacología , Fluoxetina/uso terapéutico , Hipocampo/metabolismo
2.
Front Endocrinol (Lausanne) ; 14: 1252727, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37810891

RESUMEN

Introduction: Graves' disease is an autoimmune disorder caused by auto-antibodies against the thyroid stimulating hormone receptor (TSHR). Overstimulation of the TSHR induces hyperthyroidism and thyroid eye disease (TED) as the most common extra thyroidal manifestation of Graves' disease. In TED, the TSHR cross talks with the insulin-like growth factor 1 receptor (IGF-1R) in orbital fibroblasts leading to inflammation, deposition of hyaluronan and adipogenesis. The bone marrow may play an important role in autoimmune diseases, but its role in Graves' disease and TED is unknown. Here, we investigated whether induction of experimental Graves' disease and accompanying TED involves bone marrow activation and whether interference with IGF-1R signaling prevents this activation. Results: Immunization of mice with TSHR resulted in an increase the numbers of CD4-positive T-lymphocytes (p ≤0.0001), which was normalized by linsitinib (p = 0.0029), an increase of CD19-positive B-lymphocytes (p= 0.0018), which was unaffected by linsitinib and a decrease of GR1-positive cells (p= 0.0038), which was prevented by linsitinib (p= 0.0027). In addition, we observed an increase of Sca-1 positive hematopietic stem cells (p= 0.0007) and of stromal cell-derived factor 1 (SDF-1) (p ≤0.0001) after immunization with TSHR which was prevented by linsitinib (Sca-1: p= 0.0008, SDF-1: p ≤0.0001). TSHR-immunization also resulted in upregulation of CCL-5, IL-6 and osteopontin (all p ≤0.0001) and a concomitant decrease of the immune-inhibitory cytokines IL-10 (p= 0.0064) and PGE2 (p ≤0.0001) in the bone marrow (all p≤ 0.0001). Treatment with the IGF-1R antagonist linsitinib blocked these events (all p ≤0.0001). We further demonstrate a down-regulation of arginase-1 expression (p= 0.0005) in the bone marrow in TSHR immunized mice, with a concomitant increase of local arginine (p ≤0.0001). Linsitinib induces an upregulation of arginase-1 resulting in low arginase levels in the bone marrow. Reconstitution of arginine in bone marrow cells in vitro prevented immune-inhibition by linsitinib. Conclusion: Collectively, these data indicate that the bone marrow is activated in experimental Graves' disease and TED, which is prevented by linsitinib. Linsitinib-mediated immune-inhibition is mediated, at least in part, by arginase-1 up-regulation, consumption of arginine and thereby immune inhibition.


Asunto(s)
Enfermedades Autoinmunes , Enfermedad de Graves , Oftalmopatía de Graves , Ratones , Animales , Oftalmopatía de Graves/metabolismo , Arginasa , Médula Ósea/metabolismo , Receptores de Tirotropina , Enfermedades Autoinmunes/complicaciones , Arginina
3.
Front Endocrinol (Lausanne) ; 14: 1211473, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37435490

RESUMEN

Introduction: Graves' disease (GD) is an autoimmune disorder caused by autoantibodies against the thyroid stimulating hormone receptor (TSHR) leading to overstimulation of the thyroid gland. Thyroid eye disease (TED) is the most common extra thyroidal manifestation of GD. Therapeutic options to treat TED are very limited and novel treatments need to be developed. In the present study we investigated the effect of linsitinib, a dual small-molecule kinase inhibitor of the insulin-like growth factor 1 receptor (IGF-1R) and the Insulin receptor (IR) on the disease outcome of GD and TED. Methods: Linsitinib was administered orally for four weeks with therapy initiating in either the early ("active") or the late ("chronic") phases of the disease. In the thyroid and the orbit, autoimmune hyperthyroidism and orbitopathy were analyzed serologically (total anti-TSHR binding antibodies, stimulating anti TSHR antibodies, total T4 levels), immunohistochemically (H&E-, CD3-, TNFa- and Sirius red staining) and with immunofluorescence (F4/80 staining). An MRI was performed to quantify in vivo tissue remodeling inside the orbit. Results: Linsitinib prevented autoimmune hyperthyroidism in the early state of the disease, by reducing morphological changes indicative for hyperthyroidism and blocking T-cell infiltration, visualized by CD3 staining. In the late state of the disease linsitinib had its main effect in the orbit. Linsitinib reduced immune infiltration of T-cells (CD3 staining) and macrophages (F4/80 and TNFa staining) in the orbita in experimental GD suggesting an additional, direct effect of linsitinib on the autoimmune response. In addition, treatment with linsitinib normalized the amount of brown adipose tissue in both the early and late group. An in vivo MRI of the late group was performed and revealed a marked decrease of inflammation, visualized by 19F MR imaging, significant reduction of existing muscle edema and formation of brown adipose tissue. Conclusion: Here, we demonstrate that linsitinib effectively prevents development and progression of thyroid eye disease in an experimental murine model for Graves' disease. Linsitinib improved the total disease outcome, indicating the clinical significance of the findings and providing a path to therapeutic intervention of Graves' Disease. Our data support the use of linsitinib as a novel treatment for thyroid eye disease.


Asunto(s)
Enfermedad de Graves , Oftalmopatía de Graves , Inhibidores de Proteínas Quinasas , Receptor IGF Tipo 1 , Animales , Ratones , Enfermedad de Graves/tratamiento farmacológico , Oftalmopatía de Graves/tratamiento farmacológico , Hipertiroidismo , Imidazoles , Inhibidores de Proteínas Quinasas/uso terapéutico , Receptor IGF Tipo 1/antagonistas & inhibidores
4.
J Mol Med (Berl) ; 101(3): 295-310, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36790532

RESUMEN

Pancreas ductal adenocarcinoma (PDAC) remains a malignant tumor with very poor prognosis and low 5-year overall survival. Here, we aimed to simultaneously target mitochondria and lysosomes as a new treatment paradigm of malignant pancreas cancer in vitro and in vivo. We demonstrate that the clinically used sphingosine analog FTY-720 together with PAPTP, an inhibitor of mitochondrial Kv1.3, induce death of pancreas cancer cells in vitro and in vivo. The combination of both drugs results in a marked inhibition of the acid sphingomyelinase and accumulation of cellular sphingomyelin in vitro and in vivo in orthotopic and flank pancreas cancers. Mechanistically, PAPTP and FTY-720 cause a disruption of both mitochondria and lysosomes, an alteration of mitochondrial bioenergetics and accumulation of cytoplasmic Ca2+, events that collectively mediate cell death. Our findings point to an unexpected cross-talk between lysosomes and mitochondria mediated by sphingolipid metabolism. We show that the combination of PAPTP and FTY-720 induces massive death of pancreas cancer cells, thereby leading to a substantially delayed and reduced PDAC growth in vivo. KEY MESSAGES: FTY-720 inhibits acid sphingomyelinase in pancreas cancer cells (PDAC). FTY-720 induces sphingomyelin accumulation and lysosomal dysfunction. The mitochondrial Kv1.3 inhibitor PAPTP disrupts mitochondrial functions. PAPTP and FTY-720 synergistically kill PDAC in vitro. The combination of FTY-720 and PAPTP greatly delays PDAC growth in vivo.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Esfingomielina Fosfodiesterasa , Esfingomielinas/metabolismo , Clorhidrato de Fingolimod , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Lisosomas/metabolismo , Mitocondrias/metabolismo , Línea Celular Tumoral , Conductos Pancreáticos/metabolismo , Conductos Pancreáticos/patología , Neoplasias Pancreáticas
5.
J Neurochem ; 163(4): 357-369, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36227646

RESUMEN

Major depressive disorder (MDD) is a severe disease of unknown pathogenesis with a lifetime prevalence of ~10%. Therapy requires prolonged treatment that often fails. We have previously demonstrated that ceramide levels in the blood plasma of patients and in mice with experimental MDD are increased. Neutralization of blood plasma ceramide prevented experimental MDD in mice. Mechanistically, we demonstrated that blood plasma ceramide accumulated in endothelial cells of the hippocampus, inhibited phospholipase D (PLD) and thereby decreased phosphatidic acid in the hippocampus. Here, we demonstrate that phosphatidic acid binds to and controls the activity of phosphotyrosine phosphatase (PTP1B) in the hippocampus and thus determines tyrosine phosphorylation of a variety of cellular proteins including TrkB. Injection of PLD, phosphatidic acid, or inhibition of PTP1B abrogated MDD and normalized cellular tyrosine phosphorylation, including phosphorylation of TrkB and neurogenesis in the hippocampus. Most importantly, these treatments also rapidly normalized behavior of mice with experimental MDD. Since phosphatidic acid binds to and inhibits PTP1B, the lack of phosphatidic acid results in increased activity of PTP1B and thereby in reduced tyrosine phosphorylation of TrkB and other cellular proteins. Thus, our data indicate a novel pathogenetic mechanism of and a rapidly acting targeted treatment for MDD.


Asunto(s)
Trastorno Depresivo Mayor , Ácidos Fosfatidicos , Ratones , Animales , Ácidos Fosfatidicos/metabolismo , Ácidos Fosfatidicos/farmacología , Células Endoteliales/metabolismo , Fosforilación , Ceramidas , Tirosina/metabolismo
6.
J Mol Med (Berl) ; 100(10): 1493-1508, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36045177

RESUMEN

Major depressive disorder (MDD) is a very common, severe disease with a lifetime prevalence of ~ 10%. The pathogenesis of MDD is unknown and, unfortunately, therapy is often insufficient. We have previously reported that ceramide levels are increased in the blood plasma of patients with MDD and in mice with experimental MDD. Here, we demonstrate that ceramide-enriched exosomes in the blood plasma are increased in mice with stress-induced MDD. Genetic studies reveal that neutral sphingomyelinase 2 is required for the formation of ceramide-enriched exosomes in the blood plasma. Accordingly, induced deficiency of neutral sphingomyelinase 2 prevented mice from the development of stress-induced MDD. Intravenous injection of microparticles from mice with MDD or injection of ceramide-loaded exosomes induced MDD-like behavior in untreated mice, which was abrogated by ex vivo pre-incubation of purified exosomes with anti-ceramide antibodies or ceramidase. Mechanistically, injection of exosomes from mice with MDD or injection of ex vivo ceramide-loaded microparticles inhibited phospholipase D (PLD) in endothelial cells in vitro and in the hippocampus in vivo and thereby decreased phosphatidic acid in the hippocampus, which has been previously shown to mediate MDD by plasma ceramide. In summary, our data indicate that ceramide-enriched exosomes are released by neutral sphingomyelinase 2 into the blood plasma upon stress and mediate stress-induced MDD. KEY MESSAGES: Stress induces ceramide-enriched exosomes in the blood plasma. Ceramide-enriched exosomes mediate major depressive disorder (MDD). Deficiency of neutral sphingomyelinase 2 protects from stress-induced MDD. Neutralization or digestion of ceramide in exosomes prevents stress-induced MDD. Ceramide-enriched exosomes inhibit endothelial phospholipase D in the hippocampus.


Asunto(s)
Trastorno Depresivo Mayor , Exosomas , Fosfolipasa D , Animales , Ceramidas , Células Endoteliales , Ratones , Plasma , Esfingomielina Fosfodiesterasa/genética , Estrés Fisiológico
7.
PLoS One ; 17(7): e0271620, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35862397

RESUMEN

BACKGROUND: Ex-vivo lung perfusion (EVLP) is a save way to verify performance of donor lungs prior to implantation. A major problem of lung transplantation is a donor-to-recipient-transmission of bacterial cultures. Thus, a broadspectrum anti-infective treatment with sphingosine in EVLP might be a novel way to prevent such infections. Sphingosine inhalation might provide a reliable anti-infective treatment option in EVLP. Here, antimicrobial potency of inhalative sphingosine in an infection EVLP model was tested. METHODS: A 3-hour EVLP run using pig lungs was performed. Bacterial infection was initiated 1-hour before sphingosine inhalation. Biopsies were obtained 60 and 120 min after infection with Pseudomonas aeruginosa. Aliquots of broncho-alveolar lavage (BAL) before and after inhalation of sphingosine were plated and counted, tissue samples were fixed in paraformaldehyde, embedded in paraffin and sectioned. Immunostainings were performed. RESULTS: Sphingosine inhalation in the setting of EVLP rapidly resulted in a 6-fold decrease of P. aeruginosa CFU in the lung (p = 0.016). We did not observe any negative side effects of sphingosine. CONCLUSION: Inhalation of sphingosine induced a significant decrease of Pseudomonas aeruginosa at the epithelial layer of tracheal and bronchial cells. The inhalation has no local side effects in ex-vivo perfused and ventilated pig lungs.


Asunto(s)
Antiinfecciosos , Trasplante de Pulmón , Animales , Antiinfecciosos/farmacología , Pulmón , Trasplante de Pulmón/métodos , Perfusión/métodos , Pseudomonas aeruginosa , Esfingosina/farmacología , Porcinos
8.
J Biol Chem ; 298(8): 102185, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35753355

RESUMEN

Major depressive disorder (MDD) is a severe disease of unknown pathogenesis that will affect ∼10% of people during their lifetime. Therapy for MDD requires prolonged treatment and often fails, predicating a need for novel treatment strategies. Here, we report increased ceramide levels in the blood plasma of MDD patients and in murine stress-induced models of MDD. These blood plasma ceramide levels correlated with the severity of MDD in human patients and were independent of age, sex, or body mass index. In addition, intravenous injection of anti-ceramide antibodies or neutral ceramidase rapidly abrogated stress-induced MDD, and intravenous injection of blood plasma from mice with MDD induced depression-like behavior in untreated mice, which was abrogated by ex vivo preincubation of the plasma with anti-ceramide antibodies or ceramidase. Mechanistically, we demonstrate that ceramide accumulated in endothelial cells of the hippocampus of stressed mice, evidenced by the quantitative measurement of ceramide in purified hippocampus endothelial cells. We found ceramide inhibited the activity of phospholipase D (PLD) in endothelial cells in vitro and in the hippocampus in vivo and thereby decreased phosphatidic acid in the hippocampus. Finally, we show intravenous injection of PLD or phosphatidic acid abrogated MDD, indicating the significance of this pathway in MDD pathogenesis. Our data indicate that ceramide controls PLD activity and phosphatidic acid formation in hippocampal endothelial cells and thereby mediates MDD. We propose that neutralization of plasma ceramide could represent a rapid-acting targeted treatment for MDD.


Asunto(s)
Trastorno Depresivo Mayor , Fosfolipasa D , Animales , Ceramidas/metabolismo , Trastorno Depresivo Mayor/metabolismo , Células Endoteliales/metabolismo , Hipocampo/metabolismo , Humanos , Ratones , Ácidos Fosfatidicos/metabolismo , Fosfolipasa D/metabolismo , Plasma
9.
Sci Rep ; 11(1): 18607, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34545108

RESUMEN

Ex-vivo lung perfusion (EVLP) systems like XVIVO are more and more common in the setting of lung transplantation, since marginal donor-lungs can easily be subjected to a performance test or be treated with corticosteroids or antibiotics in high dose regimes. Donor lungs are frequently positive in bronchoalveolar lavage (BAL) bacterial cultures (46-89%) which leads to a donor-to-recipient transmission and after a higher risk of lung infection with reduced posttransplant outcome. We have previously shown that sphingosine very efficiently kills a variety of pathogens, including Pseudomonas aeruginosa, Staphylococcus aureus and epidermidis, Escherichia coli or Haemophilus influenzae. Thus, sphingosine could be a new treatment option with broadspectrum antiinfective potential, which may improve outcome after lung transplantation when administered prior to lung re-implantation. Here, we tested whether sphingosine has any adverse effects in the respiratory tract when applied into isolated ventilated and perfused lungs. A 4-h EVLP run using minipig lungs was performed. Functional parameters as well as perfusate measurements where obtained. Biopsies were obtained 30 min and 150 min after inhalation of sphingosine. Tissue samples were fixed in paraformaldehyde, embedded in paraffin and sectioned. Hemalaun, TUNEL as well as stainings with Cy3-coupled anti-sphingosine or anti-ceramide antibodies were implemented. We demonstrate that tube-inhalation of sphingosine into ex-vivo perfused and ventilated minipig lungs results in increased levels of sphingosine in the luminal membrane of bronchi and the trachea without morphological side effects up to very high doses of sphingosine. Sphingosine also did not affect functional lung performance. In summary, the inhalation of sphingosine results in an increase of sphingosine concentrations in the luminal plasma membrane of tracheal and bronchial epithelial cells. The inhalation has no local side effects in ex-vivo perfused and ventilated minipig lungs.


Asunto(s)
Antibacterianos/administración & dosificación , Trasplante de Pulmón/métodos , Pulmón/efectos de los fármacos , Esfingosina/administración & dosificación , Administración por Inhalación , Animales , Perfusión/métodos , Porcinos
10.
J Biol Chem ; 296: 100650, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33839155

RESUMEN

Most patients with cystic fibrosis (CF) suffer from acute and chronic pulmonary infections with bacterial pathogens, which often determine their life quality and expectancy. Previous studies have demonstrated a downregulation of the acid ceramidase in CF epithelial cells resulting in an increase of ceramide and a decrease of sphingosine. Sphingosine kills many bacterial pathogens, and the downregulation of sphingosine seems to determine the infection susceptibility of cystic fibrosis mice and patients. It is presently unknown how deficiency of the cystic fibrosis transmembrane conductance regulator (CFTR) connects to a marked downregulation of the acid ceramidase in human and murine CF epithelial cells. Here, we employed quantitative PCR, western blot analysis, and enzyme activity measurements to study the role of IRF8 for acid ceramidase regulation. We report that genetic deficiency or functional inhibition of CFTR/Cftr results in an upregulation of interferon regulatory factor 8 (IRF8) and a concomitant downregulation of acid ceramidase expression with CF and an increase of ceramide and a reduction of sphingosine levels in tracheal and bronchial epithelial cells from both human individuals or mice. CRISPR/Cas9- or siRNA-mediated downregulation of IRF8 prevented changes of acid ceramidase, ceramide, and sphingosine in CF epithelial cells and restored resistance to Pseudomonas aeruginosa infections, which is one of the most important and common pathogens in lung infection of patients with CF. These studies indicate that CFTR deficiency causes a downregulation of acid ceramidase via upregulation of IRF8, which is a central pathway to control infection susceptibility of CF cells.


Asunto(s)
Ceramidasa Ácida/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fibrosis Quística/microbiología , Células Epiteliales/microbiología , Factores Reguladores del Interferón/metabolismo , Pulmón/microbiología , Infecciones por Pseudomonas/microbiología , Ceramidasa Ácida/genética , Animales , Ceramidas/metabolismo , Fibrosis Quística/inmunología , Fibrosis Quística/metabolismo , Fibrosis Quística/patología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Células Epiteliales/patología , Humanos , Factores Reguladores del Interferón/genética , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/patología , Ratones , Ratones Noqueados , Infecciones por Pseudomonas/genética , Infecciones por Pseudomonas/metabolismo , Pseudomonas aeruginosa/aislamiento & purificación , Esfingosina/metabolismo
11.
Infect Immun ; 89(2)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33139382

RESUMEN

Previous studies have shown that sphingosine kills a variety of pathogenic bacteria, including Pseudomonas aeruginosa and Staphylococcus aureus Sphingosine concentrations are decreased in airway epithelial cells of cystic fibrosis (CF) mice, and this defect has been linked to the infection susceptibility of these mice. Here, we tested whether the genetic overexpression of acid ceramidase rescues cystic fibrosis mice from pulmonary infections with P. aeruginosa We demonstrate that the transgenic overexpression of acid ceramidase in CF mice corresponds to the overexpression of acid ceramidase in bronchial and tracheal epithelial cells and normalizes ceramide and sphingosine levels in bronchial and tracheal epithelial cells. In addition, the expression of ß1-integrin, which is ectopically expressed on the luminal surface of airway epithelial cells in cystic fibrosis mice, an alteration that is very important for mediating pulmonary P. aeruginosa infections in cystic fibrosis, is normalized in cystic fibrosis airways upon the overexpression of acid ceramidase. Most importantly, the overexpression of acid ceramidase protects cystic fibrosis mice from pulmonary P. aeruginosa infections. Infection of CF mice or CF mice that inhaled sphingosine with P. aeruginosa or a P. aeruginosa mutant that is resistant to sphingosine indicates that sphingosine and not a metabolite kills P. aeruginosa upon pulmonary infection. These studies further support the use of acid ceramidase and its metabolite sphingosine as potential treatments of cystic fibrosis.


Asunto(s)
Ceramidasa Ácida/genética , Ceramidasa Ácida/farmacología , Ceramidasa Ácida/uso terapéutico , Fibrosis Quística/complicaciones , Fibrosis Quística/tratamiento farmacológico , Infecciones por Pseudomonas/etiología , Infecciones por Pseudomonas/prevención & control , Animales , Fibrosis Quística/fisiopatología , Regulación Bacteriana de la Expresión Génica , Humanos , Ratones , Modelos Animales , Pseudomonas aeruginosa/efectos de los fármacos , Virulencia/genética
12.
Cell Rep Med ; 1(8): 100142, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33163980

RESUMEN

The acid sphingomyelinase/ceramide system plays an important role in bacterial and viral infections. Here, we report that either pharmacological inhibition of acid sphingomyelinase with amitriptyline, imipramine, fluoxetine, sertraline, escitalopram, or maprotiline or genetic downregulation of the enzyme prevents infection of cultured cells or freshy isolated human nasal epithelial cells with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or vesicular stomatitis virus (VSV) pseudoviral particles (pp-VSV) presenting SARS-CoV-2 spike protein (pp-VSV-SARS-CoV-2 spike), a bona fide system mimicking SARS-CoV-2 infection. Infection activates acid sphingomyelinase and triggers a release of ceramide on the cell surface. Neutralization or consumption of surface ceramide reduces infection with pp-VSV-SARS-CoV-2 spike. Treating volunteers with a low dose of amitriptyline prevents infection of freshly isolated nasal epithelial cells with pp-VSV-SARS-CoV-2 spike. The data justify clinical studies investigating whether amitriptyline, a safe drug used clinically for almost 60 years, or other antidepressants that functionally block acid sphingomyelinase prevent SARS-CoV-2 infection.


Asunto(s)
Células Epiteliales/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Esfingomielina Fosfodiesterasa/antagonistas & inhibidores , Amitriptilina/farmacología , Animales , Antidepresivos/farmacología , Ceramidas/antagonistas & inhibidores , Ceramidas/metabolismo , Chlorocebus aethiops , Células Epiteliales/metabolismo , Células Epiteliales/virología , Humanos , Mucosa Nasal/efectos de los fármacos , Mucosa Nasal/metabolismo , Mucosa Nasal/virología , Ceramidasa Neutra/farmacología , SARS-CoV-2/fisiología , Esfingomielina Fosfodiesterasa/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero , Virus de la Estomatitis Vesicular Indiana/genética
13.
J Biol Chem ; 295(45): 15174-15182, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-32917722

RESUMEN

Sphingosine has been shown to prevent and eliminate bacterial infections of the respiratory tract, but it is unknown whether sphingosine can be also employed to prevent viral infections. To test this hypothesis, we analyzed whether sphingosine regulates the infection of cultured and freshly isolated ex vivo human epithelial cells with pseudoviral particles expressing SARS-CoV-2 spike (pp-VSV-SARS-CoV-2 spike) that served as a bona fide system mimicking SARS-CoV-2 infection. We demonstrate that exogenously applied sphingosine suspended in 0.9% NaCl prevents cellular infection with pp-SARS-CoV-2 spike. Pretreatment of cultured Vero epithelial cells or freshly isolated human nasal epithelial cells with low concentrations of sphingosine prevented adhesion of and infection with pp-VSV-SARS-CoV-2 spike. Mechanistically, we demonstrate that sphingosine binds to ACE2, the cellular receptor of SARS-CoV-2, and prevents the interaction of the receptor-binding domain of the viral spike protein with ACE2. These data indicate that sphingosine prevents at least some viral infections by interfering with the interaction of the virus with its receptor. Our data also suggest that further preclinical and finally clinical examination of sphingosine is warranted for potential use as a prophylactic or early treatment for coronavirus disease-19.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Esfingosina/farmacología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Animales , Células Cultivadas , Chlorocebus aethiops , Células HEK293 , Humanos , Mucosa Nasal/metabolismo , Mucosa Nasal/virología , Unión Proteica , SARS-CoV-2/patogenicidad , SARS-CoV-2/fisiología , Células Vero , Internalización del Virus/efectos de los fármacos
14.
Cell Physiol Biochem ; 53(S1): 1-10, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31804046

RESUMEN

BACKGROUND/AIMS: We have previously shown that inhibition of the mitochondrial Kv1.3 channel results in an initial mitochondrial hyperpolarization and a release of oxygen radicals that mediate mitochondrial depolarization, cytochrome c release and death. Here, we investigated whether inhibition of Kv1.3 channels can also induce cellular resistance mechanisms that counteract the induction of cell death under certain conditions. METHODS: We treated leukemic T cells with the mitochondria-targeted Kv1.3 inhibitor PCARBTP and determined the activity of different kinases associated with cell survival including ZAP70, PI-3-K, AKT, JNK and ERK by measuring the activation-associated phosphorylation of these proteins. Furthermore, we inhibited AKT and JNK and determined the effect of PCARBTP-induced tumor cell death. RESULTS: We demonstrate that treatment of Jurkat T leukemia cells with low doses of the mitochondria-targeted inhibitor of Kv1.3 PCARBTP (0.25 µM or 1 µM) for 10 minutes induced a constitutive phosphorylation/activation of the pro-survival signaling molecules ZAP70, PI-3-K, AKT and JNK, while the phosphorylation/activation of ERK was not affected. Stimulation of Jurkat cells via the TCR/CD3 complex induced an additional activation of a similar pattern of signaling events. Higher doses of the Kv1.3 inhibitor, i.e. 10 µM PCARBTP, reduced the basal phosphorylation/activation of these signaling molecules and also impaired their activation upon stimulation via the TCR/CD3 complex. A low dose of PCARBTP, i.e. 0.25 µM PCARBTP, was almost without any effect on cell death. In contrast, concomitant inhibition of PI-3-K or AKT greatly sensitized Jurkat leukemia cells to the Kv1.3 inhibitor PCARBTP and allowed induction of cell death already at 0.25 µM PCARBTP. CONCLUSION: These studies indicate that Jurkat leukemia cells respond to low doses of the mitochondria-targeted Kv1.3 inhibitor PCARBTP with an activation of survival signals counteracting cell death. Inhibition of these T cell survival signals sensitizes leukemia cells to death induced by mitochondria-targeted Kv1.3 inhibitors. High doses of the Kv1.3 inhibitor inactivate these signals directly permitting death.


Asunto(s)
Apoptosis/efectos de los fármacos , Cumarinas/farmacología , Compuestos Organofosforados/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Células Jurkat , Leucemia/metabolismo , Leucemia/patología , Mitocondrias/metabolismo , Fosfatidilinositol 3-Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Proteína Tirosina Quinasa ZAP-70/antagonistas & inhibidores , Proteína Tirosina Quinasa ZAP-70/metabolismo
15.
Cell Physiol Biochem ; 53(6): 1015-1028, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31854953

RESUMEN

BACKGROUND/AIMS: Pulmonary infections with Pseudomonas aeruginosa (P. aeruginosa) or Staphylococcus aureus (S. aureus) are of utmost clinical relevance in patients with cystic fibrosis, chronic obstructive pulmonary disease, after trauma and burn, upon ventilation or in immuno-compromised patients. Many P. aeruginosa and S. aureus strains are resistant to many known antibiotics and it is very difficult or often impossible to eradicate the pathogens in patient´s lungs. We have recently shown that the sphingoid base sphingosine very efficiently kills many pathogens, including for instance P. aeruginosa, S. aureus or Acinetobacter baumannii, in vitro. In vivo experiments of our group on cystic fibrosis mice indicated that inhalation of sphingosine prevents or eliminates existing acute or chronic pneumonia with P. aeruginosa or S. aureus in these mice. We also demonstrated that sphingosine is safe to use for inhalation up to high doses, at least in mice. To facilitate development of sphingosine to an anti-bactericidal drug that can be used in humans for inhalation, safety data on non-rodents, larger animals are absolutely required. METHODS: Here, we inhaled mini pigs with increasing doses of sphingosine for 10 days and analyzed the uptake of sphingosine into epithelial cells of bronchi as well as into the trachea and lung and the systemic circulation. Moreover, we measured the generation of ceramide and sphingosine 1-phosphate that potentially mediate inflammation, the influx of leukocytes, epithelial cell death and disruption of the epithelial cell barrier. RESULTS: We demonstrate that inhalation of sphingosine results in increased levels of sphingosine in the luminal membrane of bronchi and the trachea, but not in systemic accumulation. Inhaled sphingosine had no side effects up to very high doses. CONCLUSION: In summary, we demonstrate that inhalation of sphingosine results in an increase of sphingosine concentrations in the luminal plasma membrane of tracheal and bronchial epithelial cells. The inhalation has no systemic or local side effects.


Asunto(s)
Antibacterianos/metabolismo , Esfingosina/metabolismo , Administración por Inhalación , Animales , Antibacterianos/farmacología , Bronquios/metabolismo , Bronquios/patología , Ceramidas/análisis , Humanos , Pulmón/patología , Lisofosfolípidos/análisis , Espectrometría de Masas , Pseudomonas aeruginosa/efectos de los fármacos , Esfingosina/análogos & derivados , Esfingosina/análisis , Esfingosina/farmacología , Staphylococcus aureus/efectos de los fármacos , Porcinos , Porcinos Enanos , Tráquea/metabolismo , Tráquea/patología
16.
J Mol Med (Berl) ; 97(8): 1195-1211, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31222488

RESUMEN

Ventilator-associated pneumonia (VAP) is a major cause of morbidity and mortality in critically ill patients. Here, we employed the broad antibacterial effects of sphingosine to prevent VAP by developing a novel method of coating surfaces of endotracheal tubes with sphingosine and sphingosine analogs. Sphingosine and phytosphingosine coatings of endotracheal tubes prevent adherence and mediate killing of Pseudomonas aeruginosa, Acinetobacter baumannii, and Staphylococcus aureus, even in biofilms. Most importantly, sphingosine-coating of endotracheal tubes also prevented P. aeruginosa and S. aureus pneumonia in vivo. Coating of the tubes with sphingosine was stable, without obvious side effects on tracheal epithelial cells and did not induce inflammation. In summary, we describe a novel method to coat plastic surfaces and provide evidence for the application of sphingosine and phytosphingosine as novel antimicrobial coatings to prevent bacterial adherence and induce killing of pathogens on the surface of endotracheal tubes with potential to prevent biofilm formation and VAP. KEY MESSAGES: Novel dip-coating method to coat plastic surfaces with lipids. Sphingosine and phytosphingosine as novel antimicrobial coatings on plastic surface. Sphingosine coatings of endotracheal tubes prevent bacterial adherence and biofilms. Sphingosine coatings of endotracheal tubes induce killing of pathogens. Sphingosine coatings of endotracheal tubes ventilator-associated pneumonia.


Asunto(s)
Bacterias/crecimiento & desarrollo , Fenómenos Fisiológicos Bacterianos/efectos de los fármacos , Biopelículas/efectos de los fármacos , Materiales Biocompatibles Revestidos/farmacología , Neumonía Bacteriana/prevención & control , Neumonía Asociada al Ventilador/prevención & control , Esfingosina/farmacología , Animales , Ratones , Neumonía Bacteriana/microbiología , Neumonía Asociada al Ventilador/microbiología , Ovinos
17.
Cell Physiol Biochem ; 52(5): 1092-1102, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30977990

RESUMEN

BACKGROUND/AIMS: Recent studies indicated that an inhalation treatment of cystic fibrosis mice with acid ceramidase prevents and eliminates infections with Pseudomonas aeruginosa and Stapyhlococcus aureus. Inhalation of acid ceramidase facilitated the elimination of P. aeruginosa in acutely- or chronically-infected mice with cystic fibrosis. Thus, inhalation of acid ceramidase might be a preventive and/or curative treatment for patients with cystic fibrosis suffering from pneumonia. METHODS: We treated cultured epithelial cells or leukemic T-lymphocytes (Jurkat cells) with purified acid ceramidase and determined intracellular signalling events, proliferation and cell survival. Specifically, we measured the activity of AKT, p38-kinase and p70S6-kinase using activation-specific phospho-antibodies in western blot studies. Trypan Blue staining served to analyze proliferation and cell survival. RESULTS: Our studies indicate that treatment of Chang epithelial cells or Jurkat T lymphocytes with purified acid ceramidase results in a dose dependent activation of AKT, p38-kinase and p70S6-kinase, while tyrosine phosphorylation of intracellular proteins remains largely unchanged. Acid ceramidase treatment did not change expression of tight junction proteins such as ZO-1, ZO-2 and occludin. Cellular viability and proliferation were not affected by acid ceramidase treatment. CONCLUSION: Our data suggest that treatment of epithelial cells and lymphocytes with acid ceramidase results in activation of distinct pathways, in particular AKT- and p38K-dependent pathways, while no global activation or cell death was observed.


Asunto(s)
Ceramidasa Ácida/farmacología , Células Epiteliales/metabolismo , Leucemia/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas de Neoplasias/metabolismo , Transducción de Señal/efectos de los fármacos , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/metabolismo , Fibrosis Quística/patología , Células Epiteliales/patología , Humanos , Células Jurkat , Leucemia/patología
18.
Mol Psychiatry ; 23(12): 2324-2346, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30038230

RESUMEN

Major depressive disorder (MDD) is a common and severe disease characterized by mood changes, somatic alterations, and often suicide. MDD is treated with antidepressants, but the molecular mechanism of their action is unknown. We found that widely used antidepressants such as amitriptyline and fluoxetine induce autophagy in hippocampal neurons via the slow accumulation of sphingomyelin in lysosomes and Golgi membranes and of ceramide in the endoplasmic reticulum (ER). ER ceramide stimulates phosphatase 2A and thereby the autophagy proteins Ulk, Beclin, Vps34/Phosphatidylinositol 3-kinase, p62, and Lc3B. Although treatment with amitriptyline or fluoxetine requires at least 12 days to achieve sphingomyelin accumulation and the subsequent biochemical and cellular changes, direct inhibition of sphingomyelin synthases with tricyclodecan-9-yl-xanthogenate (D609) results in rapid (within 3 days) accumulation of ceramide in the ER, activation of autophagy, and reversal of biochemical and behavioral signs of stress-induced MDD. Inhibition of Beclin blocks the antidepressive effects of amitriptyline and D609 and induces cellular and behavioral changes typical of MDD. These findings identify sphingolipid-controlled autophagy as an important target for antidepressive treatment methods and provide a rationale for the development of novel antidepressants that act within a few days.


Asunto(s)
Antidepresivos/farmacología , Trastorno Depresivo Mayor/tratamiento farmacológico , Esfingomielina Fosfodiesterasa/genética , Animales , Antidepresivos/metabolismo , Autofagia/efectos de los fármacos , Hidrocarburos Aromáticos con Puentes/farmacología , Ceramidas/metabolismo , Ceramidas/farmacología , Corticosterona/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Femenino , Lisosomas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Norbornanos , Proteína Fosfatasa 2/efectos de los fármacos , Esfingomielina Fosfodiesterasa/metabolismo , Esfingomielinas/metabolismo , Tiocarbamatos , Tionas/farmacología
19.
Biol Chem ; 399(10): 1203-1213, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-29613852

RESUMEN

Pulmonary infections of cystic fibrosis (CF) patients with Staphylococcus aureus (S. aureus) occur very early in the disease. The molecular details that cause infection-susceptibility of CF patients to and mediate infection with S. aureus are poorly characterized. Therefore, we aimed to identify the role of α-toxin, a major S. aureus toxin, for pulmonary infection of CF mice. Infection with S. aureus JE2 resulted in severe pneumonia in CF mice, while wildtype mice were almost unaffected. Deficiency of α-toxin in JE2-Δhla reduced the pathogenicity of S. aureus in CF mice. However, CF mice were still more susceptible to the mutant S. aureus strain than wildtype mice. The S. aureus JE2 induced a marked increase of ceramide and a downregulation of sphingosine and acid ceramidase expression in bronchi of CF mice. Deletion of α-toxin reduced these changes after infection of CF mice. Similar changes were observed in wildtype mice, but at much lower levels. Our data indicate that expression of α-toxin is a major factor causing S. aureus infections in CF mice. Wildtype S. aureus induces a marked increase of ceramide and a reduction of sphingosine and acid ceramidase expression in bronchial epithelial cells of wildtype and CF mice, changes that determine infection susceptibility.


Asunto(s)
Toxinas Bacterianas/metabolismo , Fibrosis Quística/complicaciones , Fibrosis Quística/metabolismo , Proteínas Hemolisinas/metabolismo , Infecciones Estafilocócicas/complicaciones , Infecciones Estafilocócicas/metabolismo , Staphylococcus aureus/metabolismo , Animales , Fibrosis Quística/microbiología , Femenino , Masculino , Ratones , Ratones Congénicos , Ratones Endogámicos C57BL , Infecciones Estafilocócicas/microbiología
20.
Infect Immun ; 86(1)2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29084896

RESUMEN

Staphylococcus aureus (S. aureus) infections are among the most common and severe infections, garnering notoriety in an era of increasing resistance to antibiotics. It is therefore important to define molecular mechanisms by which this pathogen attacks host cells. Here, we demonstrate that alpha-toxin, one of the major toxins of S. aureus, induces activation of acid sphingomyelinase and concomitant release of ceramide in endothelial cells treated with the toxin. Activation of acid sphingomyelinase by alpha-toxin is mediated via ADAM10. Infection experiments employing alpha-toxin-deficient S. aureus and the corresponding wild-type strain reveal that activation of acid sphingomyelinase in endothelial cells requires alpha-toxin expression by the pathogen. Activation of acid sphingomyelinase is linked to degradation of tight junctions in endothelial cells in vitro, which is blocked by pharmacological inhibition of acid sphingomyelinase. Most importantly, alpha-toxin induces severe degradation of tight junctions in the lung and causes lung edema in vivo, which is prevented by genetic deficiency of acid sphingomyelinase. These data indicate a novel and important role of the acid sphingomyelinase/ceramide system for the endothelial response to toxins and provide a molecular link between alpha-toxin and the degradation of tight junctions. The data also suggest that inhibition of acid sphingomyelinase may provide a novel treatment option to prevent lung edema caused by S. aureus alpha-toxin.


Asunto(s)
Toxinas Bacterianas/metabolismo , Ceramidas/metabolismo , Células Endoteliales/metabolismo , Proteínas Hemolisinas/metabolismo , Esfingomielina Fosfodiesterasa/metabolismo , Staphylococcus aureus/metabolismo , Uniones Estrechas/metabolismo , Proteína ADAM10/metabolismo , Animales , Células Cultivadas , Células Endoteliales/virología , Pulmón/metabolismo , Pulmón/virología , Ratones , Ratones Endogámicos C57BL , Edema Pulmonar/metabolismo , Edema Pulmonar/virología , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/virología , Uniones Estrechas/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA