Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
J Craniofac Surg ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38506523

RESUMEN

OBJECTIVE: Crouzon syndrome with acanthosis nigricans (CAN) is caused by the specific mutation c.1172C>A (p.Ala391Glu) in the fibroblast growth factor receptor 3 gene, and has an estimated prevalence of 1:1,000,000 births. Most cases occur de novo; however, autosomal dominant inheritance may occur. The clinical presentation typically includes craniosynostosis, midface and maxillary hypoplasia, choanal atresia/stenosis, hydrocephalus, and intracranial hypertension. Patients develop acanthosis nigricans, a hyperkeratotic skin disorder. The authors present the first known study to investigate the speech, language, hearing, and feeding of patients with CAN. METHODS: A retrospective case-note review of patients with a genetically confirmed diagnosis of CAN attending the Oxford Craniofacial Unit during a 36-year period (1987-2023) was undertaken. RESULTS: Participants were 6 patients with genetically-confirmed CAN (5 females, 1 male), all cases arose de novo. All patients had craniosynostosis (n = 5/6 multisuture synostosis, n = 1/6 left unicoronal synostosis). Hydrocephalus was managed through ventriculoperitoneal shunt in 67% (n = 4/6) of patients, and 67% (n = 4/6) had a Chiari 1 malformation. Patients had a complex, multifactorial feeding history complicated by choanal atresia/stenosis (100%; n = 6/6), and significant midface hypoplasia. All patients required airway management through tracheostomy (83%; n = 5/6); and/or continuous positive airway pressure (67%; n = 4/6). All patients underwent adenotonsillectomy (100%; n = 6/6). Initial failure to thrive, low weight, and/or height were seen in 100% (n = 6/6) patients; 80% (n = 4/5) had reflux; 100% (n = 6/6) had nasogastric, or percutaneous endoscopic gastrostomy based feeding during their treatment journey. All patients had hearing loss (100%; n = 6/6). Early communication difficulties were common: receptive language disorder (50%; n = 3/6); expressive language disorder (50%; n = 3/6); and speech sound disorder in 50% (n = 3/6)-necessitating the use of Makaton in 80% of patients (n = 3/5). CONCLUSIONS: Patients with CAN experience significant respiratory, neurological, and structural obstacles to hearing, speech, language, and feeding. The authors present a recommended pathway for management to support patients in these domains.

2.
J Med Genet ; 61(4): 363-368, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38290823

RESUMEN

BACKGROUND: SMAD6 encodes an intracellular inhibitor of the bone morphogenetic protein (BMP) signalling pathway. Until now, rare heterozygous loss-of-function variants in SMAD6 were demonstrated to increase the risk of disparate clinical disorders including cardiovascular disease, craniosynostosis and radioulnar synostosis. Only two unrelated patients harbouring biallelic SMAD6 variants presenting a complex cardiovascular phenotype and facial dysmorphism have been described. CASES: Here, we present the first two patients with craniosynostosis harbouring homozygous SMAD6 variants. The male probands, both born to healthy consanguineous parents, were diagnosed with metopic synostosis and bilateral or unilateral radioulnar synostosis. Additionally, one proband had global developmental delay. Echocardiographic evaluation did not reveal cardiac or outflow tract abnormalities. MOLECULAR ANALYSES: The novel missense (c.[584T>G];[584T>G], p.[(Val195Gly)];[(Val195Gly)]) and missense/splice-site variant (c.[817G>A];[817G>A], r.[(817g>a,817delins[a;817+2_817+228])];[(817g>a,817delins[a;817+2_817+228])], p.[(Glu273Lys,Glu273Serfs*72)];[(Glu273Lys,Glu273Serfs*72)]) both locate in the functional MH1 domain of the protein and have not been reported in gnomAD database. Functional analyses of the variants showed reduced inhibition of BMP signalling or abnormal splicing, respectively, consistent with a hypomorphic mechanism of action. CONCLUSION: Our data expand the spectrum of variants and phenotypic spectrum associated with homozygous variants of SMAD6 to include craniosynostosis.


Asunto(s)
Craneosinostosis , Radio (Anatomía)/anomalías , Sinostosis , Cúbito/anomalías , Humanos , Masculino , Craneosinostosis/diagnóstico , Craneosinostosis/genética , Radio (Anatomía)/metabolismo , Cúbito/metabolismo , Mutación Missense/genética , Proteína smad6/genética , Proteína smad6/metabolismo
3.
J Med Genet ; 61(5): 490-501, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38296633

RESUMEN

INTRODUCTION: KCTD15 encodes an oligomeric BTB domain protein reported to inhibit neural crest formation through repression of Wnt/beta-catenin signalling, as well as transactivation by TFAP2. Heterozygous missense variants in the closely related paralogue KCTD1 cause scalp-ear-nipple syndrome. METHODS: Exome sequencing was performed on a two-generation family affected by a distinctive phenotype comprising a lipomatous frontonasal malformation, anosmia, cutis aplasia of the scalp and/or sparse hair, and congenital heart disease. Identification of a de novo missense substitution within KCTD15 led to targeted sequencing of DNA from a similarly affected sporadic patient, revealing a different missense mutation. Structural and biophysical analyses were performed to assess the effects of both amino acid substitutions on the KCTD15 protein. RESULTS: A heterozygous c.310G>C variant encoding p.(Asp104His) within the BTB domain of KCTD15 was identified in an affected father and daughter and segregated with the phenotype. In the sporadically affected patient, a de novo heterozygous c.263G>A variant encoding p.(Gly88Asp) was present in KCTD15. Both substitutions were found to perturb the pentameric assembly of the BTB domain. A crystal structure of the BTB domain variant p.(Gly88Asp) revealed a closed hexameric assembly, whereas biophysical analyses showed that the p.(Asp104His) substitution resulted in a monomeric BTB domain likely to be partially unfolded at physiological temperatures. CONCLUSION: BTB domain substitutions in KCTD1 and KCTD15 cause clinically overlapping phenotypes involving craniofacial abnormalities and cutis aplasia. The structural analyses demonstrate that missense substitutions act through a dominant negative mechanism by disrupting the higher order structure of the KCTD15 protein complex.


Asunto(s)
Dominio BTB-POZ , Anomalías Craneofaciales , Cara , Humanos , Anomalías Múltiples , Proteínas Co-Represoras/genética , Anomalías Craneofaciales/genética , Displasia Ectodérmica , Cara/anomalías , Mutación Missense/genética , Síndrome
5.
J Med Genet ; 60(12): 1235-1244, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37558402

RESUMEN

BACKGROUND: Current clinical testing methods used to uncover the genetic basis of rare disease have inherent limitations, which can lead to causative pathogenic variants being missed. Within the rare disease arm of the 100 000 Genomes Project (100kGP), families were recruited under the clinical indication 'single autosomal recessive mutation in rare disease'. These participants presented with strong clinical suspicion for a specific autosomal recessive disorder, but only one suspected pathogenic variant had been identified through standard-of-care testing. Whole genome sequencing (WGS) aimed to identify cryptic 'second-hit' variants. METHODS: To investigate the 31 families with available data that remained unsolved following formal review within the 100kGP, SVRare was used to aggregate structural variants present in <1% of 100kGP participants. Small variants were assessed using population allele frequency data and SpliceAI. Literature searches and publicly available online tools were used for further annotation of pathogenicity. RESULTS: Using these strategies, 8/31 cases were solved, increasing the overall diagnostic yield of this cohort from 10/41 (24.4%) to 18/41 (43.9%). Exemplar cases include a patient with cystic fibrosis harbouring a novel exonic LINE1 insertion in CFTR and a patient with generalised arterial calcification of infancy with complex interlinked duplications involving exons 2-6 of ENPP1. Although ambiguous by short-read WGS, the ENPP1 variant structure was resolved using optical genome mapping and RNA analysis. CONCLUSION: Systematic examination of cryptic variants across a multi-disease cohort successfully identifies additional pathogenic variants. WGS data analysis in autosomal recessive rare disease should consider complex structural and small intronic variants as potentially pathogenic second hits.


Asunto(s)
Enfermedades Raras , Humanos , Mutación/genética , Secuencia de Bases , Exones , Mapeo Cromosómico
6.
Genet Med ; 25(9): 100883, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37154149

RESUMEN

PURPOSE: Studies have previously implicated PRRX1 in craniofacial development, including demonstration of murine Prrx1 expression in the preosteogenic cells of the cranial sutures. We investigated the role of heterozygous missense and loss-of-function (LoF) variants in PRRX1 associated with craniosynostosis. METHODS: Trio-based genome, exome, or targeted sequencing were used to screen PRRX1 in patients with craniosynostosis; immunofluorescence analyses were used to assess nuclear localization of wild-type and mutant proteins. RESULTS: Genome sequencing identified 2 of 9 sporadically affected individuals with syndromic/multisuture craniosynostosis, who were heterozygous for rare/undescribed variants in PRRX1. Exome or targeted sequencing of PRRX1 revealed a further 9 of 1449 patients with craniosynostosis harboring deletions or rare heterozygous variants within the homeodomain. By collaboration, 7 additional individuals (4 families) were identified with putatively pathogenic PRRX1 variants. Immunofluorescence analyses showed that missense variants within the PRRX1 homeodomain cause abnormal nuclear localization. Of patients with variants considered likely pathogenic, bicoronal or other multisuture synostosis was present in 11 of 17 cases (65%). Pathogenic variants were inherited from unaffected relatives in many instances, yielding a 12.5% penetrance estimate for craniosynostosis. CONCLUSION: This work supports a key role for PRRX1 in cranial suture development and shows that haploinsufficiency of PRRX1 is a relatively frequent cause of craniosynostosis.


Asunto(s)
Craneosinostosis , Proteínas de Homeodominio , Animales , Humanos , Ratones , Secuencia de Bases , Suturas Craneales/patología , Craneosinostosis/genética , Genes Homeobox , Proteínas de Homeodominio/genética , Penetrancia
7.
Int J Mol Sci ; 24(9)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37175668

RESUMEN

ETS2 repressor factor (ERF) insufficiency causes craniosynostosis (CRS4) in humans and mice. ERF is an ETS domain transcriptional repressor regulated by Erk1/2 phosphorylation via nucleo-cytoplasmic shuttling. Here, we analyze the onset and development of the craniosynostosis phenotype in an Erf-insufficient mouse model and evaluate the potential of the residual Erf activity augmented by pharmacological compounds to ameliorate the disease. Erf insufficiency appears to cause an initially compromised frontal bone formation and subsequent multisuture synostosis, reflecting distinct roles of Erf on the cells that give rise to skull and facial bones. We treated animals with Mek1/2 and nuclear export inhibitors, U0126 and KPT-330, respectively, to increase Erf activity by two independent pathways. We implemented both a low dosage locally over the calvaria and a systemic drug administration scheme to evaluate the possible indirect effects from other systems and minimize toxicity. The treatment of mice with either the inhibitors or the administration scheme alleviated the synostosis phenotype with minimal adverse effects. Our data suggest that the ERF level is an important regulator of cranial bone development and that pharmacological modulation of its activity may represent a valid intervention approach both in CRS4 and in other syndromic forms of craniosynostosis mediated by the FGFR-RAS-ERK-ERF pathway.


Asunto(s)
Craneosinostosis , Factores de Transcripción , Animales , Ratones , Craneosinostosis/tratamiento farmacológico , Craneosinostosis/genética , Sistema de Señalización de MAP Quinasas , Fosforilación , Proteínas Represoras , Cráneo
8.
Genes (Basel) ; 14(3)2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36980886

RESUMEN

Craniosynostosis, the premature fusion of the cranial sutures, affects ~1 in 2000 children. Although many patients with a genetically determined cause harbor a variant in one of just seven genes or have a chromosomal abnormality, over 60 genes are known to be recurrently mutated, thus comprising a long tail of rarer diagnoses. Genome sequencing for the diagnosis of rare diseases is increasingly used in clinical settings, but analysis of the data is labor intensive and involves a trade-off between achieving high sensitivity or high precision. PanelApp, a crowd-sourced disease-focused set of gene panels, was designed to enable prioritization of variants in known disease genes for a given pathology, allowing enhanced identification of true-positives. For heterogeneous disorders like craniosynostosis, these panels must be regularly updated to ensure that diagnoses are not being missed. We provide a systematic review of genetic literature on craniosynostosis over the last 5 years, including additional results from resequencing a 42-gene panel in 617 affected individuals. We identify 16 genes (representing a 25% uplift) that should be added to the list of bona fide craniosynostosis disease genes and discuss the insights that these new genes provide into pathophysiological mechanisms of craniosynostosis.


Asunto(s)
Craneosinostosis , Niño , Humanos , Craneosinostosis/diagnóstico , Craneosinostosis/genética , Craneosinostosis/patología , Suturas Craneales
9.
Nat Rev Genet ; 24(7): 442-463, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36806206

RESUMEN

Understanding the consequences of genotype for phenotype (which ranges from molecule-level effects to whole-organism traits) is at the core of genetic diagnostics in medicine. Many measures of the deleteriousness of individual alleles exist, but these have limitations for predicting the clinical consequences. Various mechanisms can protect the organism from the adverse effects of functional variants, especially when the variant is paired with a wild type allele. Understanding why some alleles are harmful in the heterozygous state - representing dominant inheritance - but others only with the biallelic presence of pathogenic variants - representing recessive inheritance - is particularly important when faced with the deluge of rare genetic alterations identified by high throughput DNA sequencing. Both awareness of the specific quantitative and/or qualitative effects of individual variants and the elucidation of allelic and non-allelic interactions are essential to optimize genetic diagnosis and counselling.


Asunto(s)
Genética Médica , Genotipo , Fenotipo , Mutación , Alelos
10.
Nat Commun ; 14(1): 853, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36792598

RESUMEN

Following the diagnosis of a paediatric disorder caused by an apparently de novo mutation, a recurrence risk of 1-2% is frequently quoted due to the possibility of parental germline mosaicism; but for any specific couple, this figure is usually incorrect. We present a systematic approach to providing individualized recurrence risk. By combining locus-specific sequencing of multiple tissues to detect occult mosaicism with long-read sequencing to determine the parent-of-origin of the mutation, we show that we can stratify the majority of couples into one of seven discrete categories associated with substantially different risks to future offspring. Among 58 families with a single affected offspring (representing 59 de novo mutations in 49 genes), the recurrence risk for 35 (59%) was decreased below 0.1%, but increased owing to parental mixed mosaicism for 5 (9%)-that could be quantified in semen for paternal cases (recurrence risks of 5.6-12.1%). Implementation of this strategy offers the prospect of driving a major transformation in the practice of genetic counselling.


Asunto(s)
Padre , Parto , Masculino , Embarazo , Femenino , Humanos , Niño , Mutación , Medición de Riesgo , Células Germinativas , Mosaicismo , Linaje , Mutación de Línea Germinal
11.
J Med Genet ; 60(7): 712-716, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36543535

RESUMEN

INTRODUCTION: SPRY1 encodes protein sprouty homolog 1 (Spry-1), a negative regulator of receptor tyrosine kinase signalling. Null mutant mice display kidney/urinary tract abnormalities and altered size of the skull; complete loss-of-function of Spry-1 in humans has not been reported. METHODS: Analysis of whole-genome sequencing data from individuals with craniosynostosis enrolled in the 100,000 Genomes Project identified a likely pathogenic variant within SPRY1. Reverse-transcriptase PCR and western blot analysis were used to investigate the effect of the variant on SPRY1 mRNA and protein, in lymphoblastoid cell lines from the patient and both parents. RESULTS: A nonsense variant in SPRY1, encoding p.(Leu27*), was confirmed to be heterozygous in the unaffected parents and homozygous in the child. The child's phenotype, which included sagittal craniosynostosis, subcutaneous cystic lesions overlying the lambdoid sutures, hearing loss associated with bilateral cochlear and vestibular dysplasia and a unilateral renal cyst, overlapped the features reported in Spry1-/- null mice. Functional studies supported escape from nonsense-mediated decay, but western blot analysis demonstrated complete absence of full-length protein in the affected child and a marked reduction in both parents. CONCLUSION: This is the first report of complete loss of Spry-1 function in humans, associated with abnormalities of the cranial sutures, inner ear, and kidneys.


Asunto(s)
Craneosinostosis , Oído Interno , Sistema Urinario , Ratones , Animales , Niño , Humanos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Fosfoproteínas/genética , Ratones Noqueados , Craneosinostosis/genética
12.
Genet Med ; 24(12): 2501-2515, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36178483

RESUMEN

PURPOSE: The study aimed to identify novel genes for idiopathic hypogonadotropic hypogonadism (IHH). METHODS: A cohort of 1387 probands with IHH underwent exome sequencing and de novo, familial, and cohort-wide investigations. Functional studies were performed on 2 p190 Rho GTPase-activating proteins (p190 RhoGAP), ARHGAP35 and ARHGAP5, which involved in vivo modeling in larval zebrafish and an in vitro p190A-GAP activity assay. RESULTS: Rare protein-truncating variants (PTVs; n = 5) and missense variants in the RhoGAP domain (n = 7) in ARHGAP35 were identified in IHH cases (rare variant enrichment: PTV [unadjusted P = 3.1E-06] and missense [adjusted P = 4.9E-03] vs controls). Zebrafish modeling using gnrh3:egfp phenotype assessment showed that mutant larvae with deficient arhgap35a, the predominant ARHGAP35 paralog in the zebrafish brain, display decreased GnRH3-GFP+ neuronal area, a readout for IHH. In vitro GAP activity studies showed that 1 rare missense variant [ARHGAP35 p.(Arg1284Trp)] had decreased GAP activity. Rare PTVs (n = 2) also were discovered in ARHGAP5, a paralog of ARHGAP35; however, arhgap5 zebrafish mutants did not display significant GnRH3-GFP+ abnormalities. CONCLUSION: This study identified ARHGAP35 as a new autosomal dominant genetic driver for IHH and ARHGAP5 as a candidate gene for IHH. These observations suggest a novel role for the p190 RhoGAP proteins in GnRH neuronal development and integrity.


Asunto(s)
Hipogonadismo , Pez Cebra , Animales , Humanos , Pez Cebra/genética , Hipogonadismo/genética , Hormona Liberadora de Gonadotropina/genética , Proteínas Represoras , Factores de Intercambio de Guanina Nucleótido , Proteínas Activadoras de GTPasa/genética
13.
J Craniofac Surg ; 33(6): 1847-1852, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35761471

RESUMEN

ABSTRACT: Pathogenic variants of the ERF gene were previously associated with craniosynostosis, craniofacial dysmorphism and Chiari malformation. This study investigates cognitive, behavioural, speech, language, and developmental outcomes in the first 5 children identified at the Oxford Craniofacial Unit as having ERF- related craniosynostosis, together with three of their carrier parents.There were no consistent findings related to overall intelligence. However, a pattern of cognitive difficulties is described, which includes poor attention, impulsivity and difficulties with functional fine motor skills, such as handwriting. A high frequency of speech, language and communication difficulties was evident, which was most often related to early language difficulties, speech sound difficulties, hyponasal resonance and concern regarding social communication skills and emotional immaturity.It was common for these children to have needed input from ear, nose and throat services. Problems with tonsils and/or adenoids and/ or fluctuating conductive hearing loss were found which may be contributors to early speech, language and communication difficulties.The authors make recommendations regarding the need for formal assessment of a range of developmental aspects upon diagnosis of a pathogenic variant in the ERF gene. The aim of this report is to give clinical guidance to anyone who may have care of patients with the ERF -related mutation.


Asunto(s)
Trastornos de la Comunicación , Craneosinostosis , Conducta , Niño , Cognición , Craneosinostosis/genética , Humanos , Lenguaje , Proteínas Represoras/genética , Habla , Trastornos del Habla/genética
14.
Genes (Basel) ; 13(5)2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35627201

RESUMEN

Craniosynostosis (CS) is a major birth defect in which one or more skull sutures fuse prematurely. We previously performed a genome-wide association study (GWAS) for sagittal non-syndromic CS (sNCS), identifying associations downstream from BMP2 on 20p12.3 and intronic to BBS9 on 7p14.3; analyses of imputed variants in DLG1 on 3q29 were also genome-wide significant. We followed this work with a GWAS for metopic non-syndromic NCS (mNCS), discovering a significant association intronic to BMP7 on 20q13.31. In the current study, we sequenced the associated regions on 3q29, 7p14.3, and 20p12.3, including two candidate genes (BMP2 and BMPER) near some of these regions in 83 sNCS child-parent trios, and sequenced regions on 7p14.3 and 20q13.2-q13.32 in 80 mNCS child-parent trios. These child-parent trios were selected from the original GWAS cohorts if the probands carried at least one copy of the top associated GWAS variant (rs1884302 C allele for sNCS; rs6127972 T allele for mNCS). Many of the variants sequenced in these targeted regions are strongly predicted to be within binding sites for transcription factors involved in craniofacial development or bone morphogenesis. Variants enriched in more than one trio and predicted to be damaging to gene function are prioritized for functional studies.


Asunto(s)
Craneosinostosis , Estudio de Asociación del Genoma Completo , Alelos , Proteínas Portadoras/genética , Craneosinostosis/genética , Humanos
15.
16.
Am J Hum Genet ; 109(4): 750-758, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35202563

RESUMEN

Chromatin is essentially an array of nucleosomes, each of which consists of the DNA double-stranded fiber wrapped around a histone octamer. This organization supports cellular processes such as DNA replication, DNA transcription, and DNA repair in all eukaryotes. Human histone H4 is encoded by fourteen canonical histone H4 genes, all differing at the nucleotide level but encoding an invariant protein. Here, we present a cohort of 29 subjects with de novo missense variants in six H4 genes (H4C3, H4C4, H4C5, H4C6, H4C9, and H4C11) identified by whole-exome sequencing and matchmaking. All individuals present with neurodevelopmental features of intellectual disability and motor and/or gross developmental delay, while non-neurological features are more variable. Ten amino acids are affected, six recurrently, and are all located within the H4 core or C-terminal tail. These variants cluster to specific regions of the core H4 globular domain, where protein-protein interactions occur with either other histone subunits or histone chaperones. Functional consequences of the identified variants were evaluated in zebrafish embryos, which displayed abnormal general development, defective head organs, and reduced body axis length, providing compelling evidence for the causality of the reported disorder(s). While multiple developmental syndromes have been linked to chromatin-associated factors, missense-bearing histone variants (e.g., H3 oncohistones) are only recently emerging as a major cause of pathogenicity. Our findings establish a broader involvement of H4 variants in developmental syndromes.


Asunto(s)
Histonas , Pez Cebra , Animales , Cromatina , ADN , Histonas/metabolismo , Humanos , Síndrome , Pez Cebra/genética , Pez Cebra/metabolismo
17.
J Craniofac Surg ; 33(1): 243-250, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34310431

RESUMEN

Apert syndrome (AS) is caused by the heterozygous presence of 1 of 2 specific missense mutations of the fibroblast growth factor receptor 2 (FGFR2) gene. The 2 adjacent substitutions, designated p.Ser252Trp (S252W) and p.Pro253Arg (P253R), account for more than 98% of cases. Previous research has identified elevated hearing difficulties and incidence of cleft palate in this population. However, the influence of FGFR2 genotype on the speech, language, and communicative participation of children with AS has yet to be examined. METHODS: A retrospective case note analysis was completed for all patients with a genetically-confirmed Apert mutation who attended the Oxford Craniofacial Unit over a 43-year period (1978-2020). Medical records were analyzed for speech, language, hearing, and communication data in detail. The therapy outcome measures, based on the World Health Organization International Classification of Functioning, Disability, and Health was used to classify patient's communicative participation. RESULTS: The authors identified 55 AS patients with genetically-confirmed mutation of the FGFR2 gene. One patient with a S252F mutation was excluded. There were 31 patients with the S252W mutation (male = 14; female = 17), age range of last hearing assessment (1-18 years), 64% (18/28) of patients had a cleft palate (including bifid uvula), 15 patients had conductive hearing loss, 1 patient had mixed hearing loss, 18 had otitis media with effusion (4 of whom had a cleft palate); 88% (21/24) of patients had receptive language difficulties, 88% (22/25) of patients had expressive language difficulties, 96% (27/28) of patients had a speech sound disorder. There were 23 patients with the P253R mutation (male = 13; female = 10); age range of last hearing assessment (1-13 years), 35% (8/23) patients had a cleft palate (including bifid uvula), 14 patients had a conductive hearing loss, 17 had otitis media with effusion (2 of whom had a cleft palate). Results indicated that 85% (17/20) of patients had receptive language difficulties, 80% (16/20) had expressive language difficulties, 100% (21/21) had a speech sound disorder. The S252W mutation was significantly-associated with the presence of cleft palate (including bifid uvula) (P  = 0.05).Data about the cumulative impact of all of these factors for communicative participation using the therapy outcome measures were available for 47 patients: (30 S252W; 17 P253R). Patients with a S252W mutation had significantly more severe difficulties with communicative participation when compared to individuals with a P253R mutation (P  = 0.0005) Cochran-Armitage trend test. CONCLUSIONS: Speech, language, communicative participation, and hearing difficulties are pervasive in patients with AS. The severity and functional impact of these difficulties are magnified in patients with the S252W mutation. Results reinforce the importance of considering patients with AS according to genotype.


Asunto(s)
Acrocefalosindactilia , Fisura del Paladar , Acrocefalosindactilia/genética , Adolescente , Niño , Preescolar , Comunicación , Femenino , Audición , Humanos , Lactante , Lenguaje , Masculino , Mutación , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Estudios Retrospectivos , Habla
18.
J Med Genet ; 59(8): 776-780, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34353863

RESUMEN

INTRODUCTION: Replication of the nuclear genome is an essential step for cell division. Pathogenic variants in genes coding for highly conserved components of the DNA replication machinery cause Meier-Gorlin syndrome (MGORS). OBJECTIVE: Identification of novel genes associated with MGORS. METHODS: Exome sequencing was performed to investigate the genotype of an individual presenting with prenatal and postnatal growth restriction, a craniofacial gestalt of MGORS and coronal craniosynostosis. The analysis of the candidate variants employed bioinformatic tools, in silico structural protein analysis and modelling in budding yeast. RESULTS: A novel homozygous missense variant NM_016095.2:c.341G>T, p.(Arg114Leu), in GINS2 was identified. Both non-consanguineous healthy parents carried this variant. Bioinformatic analysis supports its classification as pathogenic. Functional analyses using yeast showed that this variant increases sensitivity to nicotinamide, a compound that interferes with DNA replication processes. The phylogenetically highly conserved residue p.Arg114 localises at the docking site of CDC45 and MCM5 at GINS2. Moreover, the missense change possibly disrupts the effective interaction between the GINS complex and CDC45, which is necessary for the CMG helicase complex (Cdc45/MCM2-7/GINS) to accurately operate. Interestingly, our patient's phenotype is strikingly similar to the phenotype of patients with CDC45-related MGORS, particularly those with craniosynostosis, mild short stature and patellar hypoplasia. CONCLUSION: GINS2 is a new disease-associated gene, expanding the genetic aetiology of MGORS.


Asunto(s)
Proteínas Cromosómicas no Histona , Microtia Congénita , Craneosinostosis , Micrognatismo , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Microtia Congénita/genética , Craneosinostosis/genética , Trastornos del Crecimiento/genética , Humanos , Micrognatismo/genética , Rótula/anomalías , Saccharomyces cerevisiae/genética
19.
J Med Genet ; 59(2): 165-169, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33436522

RESUMEN

BACKGROUND: Pathogenic heterozygous SIX1 variants (predominantly missense) occur in branchio-otic syndrome (BOS), but an association with craniosynostosis has not been reported. METHODS: We investigated probands with craniosynostosis of unknown cause using whole exome/genome (n=628) or RNA (n=386) sequencing, and performed targeted resequencing of SIX1 in 615 additional patients. Expression of SIX1 protein in embryonic cranial sutures was examined in the Six1nLacZ/+ reporter mouse. RESULTS: From 1629 unrelated cases with craniosynostosis we identified seven different SIX1 variants (three missense, including two de novo mutations, and four nonsense, one of which was also present in an affected twin). Compared with population data, enrichment of SIX1 loss-of-function variants was highly significant (p=0.00003). All individuals with craniosynostosis had sagittal suture fusion; additionally four had bilambdoid synostosis. Associated BOS features were often attenuated; some carrier relatives appeared non-penetrant. SIX1 is expressed in a layer basal to the calvaria, likely corresponding to the dura mater, and in the mid-sagittal mesenchyme. CONCLUSION: Craniosynostosis is associated with heterozygous SIX1 variants, with possible enrichment of loss-of-function variants compared with classical BOS. We recommend screening of SIX1 in craniosynostosis, particularly when sagittal±lambdoid synostosis and/or any BOS phenotypes are present. These findings highlight the role of SIX1 in cranial suture homeostasis.


Asunto(s)
Craneosinostosis/genética , Proteínas de Homeodominio/genética , Animales , Preescolar , Estudios de Cohortes , Suturas Craneales/embriología , Suturas Craneales/patología , Craneosinostosis/complicaciones , Craneosinostosis/embriología , Análisis Mutacional de ADN , Estudios de Asociación Genética , Proteínas de Homeodominio/fisiología , Humanos , Lactante , Ratones , Linaje , Fenotipo , RNA-Seq , Secuenciación Completa del Genoma
20.
Nat Commun ; 12(1): 4797, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34376651

RESUMEN

Sutures separate the flat bones of the skull and enable coordinated growth of the brain and overlying cranium. The coronal suture is most commonly fused in monogenic craniosynostosis, yet the unique aspects of its development remain incompletely understood. To uncover the cellular diversity within the murine embryonic coronal suture, we generated single-cell transcriptomes and performed extensive expression validation. We find distinct pre-osteoblast signatures between the bone fronts and periosteum, a ligament-like population above the suture that persists into adulthood, and a chondrogenic-like population in the dura mater underlying the suture. Lineage tracing reveals an embryonic Six2+ osteoprogenitor population that contributes to the postnatal suture mesenchyme, with these progenitors being preferentially affected in a Twist1+/-; Tcf12+/- mouse model of Saethre-Chotzen Syndrome. This single-cell atlas provides a resource for understanding the development of the coronal suture and the mechanisms for its loss in craniosynostosis.


Asunto(s)
Suturas Craneales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Osteogénesis/genética , Análisis de la Célula Individual/métodos , Transcriptoma/genética , Acrocefalosindactilia/embriología , Acrocefalosindactilia/genética , Acrocefalosindactilia/patología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Suturas Craneales/citología , Suturas Craneales/embriología , Duramadre/citología , Duramadre/embriología , Duramadre/metabolismo , Mesodermo/citología , Mesodermo/embriología , Mesodermo/metabolismo , Ratones Noqueados , Ratones Transgénicos , Osteoblastos/citología , Osteoblastos/metabolismo , RNA-Seq/métodos , Cráneo/citología , Cráneo/embriología , Cráneo/metabolismo , Proteína 1 Relacionada con Twist/genética , Proteína 1 Relacionada con Twist/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA