Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 7(1): 792, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951693

RESUMEN

The African buffalo (Syncerus caffer) is a wild bovid with a historical distribution across much of sub-Saharan Africa. Genomic analysis can provide insights into the evolutionary history of the species, and the key selective pressures shaping populations, including assessment of population level differentiation, population fragmentation, and population genetic structure. In this study we generated the highest quality de novo genome assembly (2.65 Gb, scaffold N50 69.17 Mb) of African buffalo to date, and sequenced a further 195 genomes from across the species distribution. Principal component and admixture analyses provided little support for the currently described four subspecies. Estimating Effective Migration Surfaces analysis suggested that geographical barriers have played a significant role in shaping gene flow and the population structure. Estimated effective population sizes indicated a substantial drop occurring in all populations 5-10,000 years ago, coinciding with the increase in human populations. Finally, signatures of selection were enriched for key genes associated with the immune response, suggesting infectious disease exert a substantial selective pressure upon the African buffalo. These findings have important implications for understanding bovid evolution, buffalo conservation and population management.


Asunto(s)
Búfalos , Genoma , Genómica , Búfalos/genética , Animales , Genómica/métodos , Flujo Génico , África del Sur del Sahara , Genética de Población , Filogenia , Variación Genética
2.
PLoS One ; 18(2): e0282098, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36821630

RESUMEN

Burkholderia pseudomallei is a facultative intracellular bacterial pathogen that causes melioidosis, a severe invasive disease of humans. We previously reported that the stress-related catecholamine hormone epinephrine enhances motility of B. pseudomallei, transcription of flagellar genes and the production of flagellin. It has been reported that the QseBC two-component sensory system regulates motility and virulence-associated genes in other Gram-negative bacteria in response to stress-related catecholamines, albeit disparities between studies exist. We constructed and whole-genome sequenced a mutant of B. pseudomallei with a deletion spanning the predicted qseBC homologues (bpsl0806 and bpsl0807). The ΔqseBC mutant exhibited significantly reduced swimming and swarming motility and reduced transcription of fliC. It also exhibited a defect in biofilm formation and net intracellular survival in J774A.1 murine macrophage-like cells. While epinephrine enhanced bacterial motility and fliC transcription, no further reduction in these phenotypes was observed with the ΔqseBC mutant in the presence of epinephrine. Plasmid-mediated expression of qseBC suppressed bacterial growth, complicating attempts to trans-complement mutant phenotypes. Our data support a role for QseBC in motility, biofilm formation and net intracellular survival of B. pseudomallei, but indicate that it is not essential for epinephrine-induced motility per se.


Asunto(s)
Burkholderia pseudomallei , Melioidosis , Animales , Humanos , Ratones , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Burkholderia pseudomallei/metabolismo , Epinefrina/farmacología , Epinefrina/metabolismo , Flagelina/metabolismo
3.
Environ Microbiome ; 18(1): 1, 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36624518

RESUMEN

BACKGROUND: Honeybees use plant material to manufacture their own food. These insect pollinators visit flowers repeatedly to collect nectar and pollen, which are shared with other hive bees to produce honey and beebread. While producing these products, beehives accumulate a considerable number of microbes, including bacteria that derive from plants and different parts of the honeybees' body. Whether bacteria form similar communities amongst beehives, even if located in close proximity, is an ecologically important question that has been addressed in this study. Specific ecological factors such as the surrounding environment and the beekeeping methods used can shape the microbiome of the beehive as a whole, and eventually influence the health of the honeybees and their ecosystem. RESULTS: We conducted 16S rRNA meta-taxonomic analysis on honey and beebread samples that were collected from 15 apiaries in the southeast of England to quantify the bacteria associated with different beehives. We observed that honeybee products carry a significant variety of bacterial groups that comprise bee commensals, environmental bacteria and symbionts and pathogens of plants and animals. Remarkably, this bacterial diversity differs not only amongst apiaries, but also between the beehives of the same apiary. In particular, the levels of the bee commensals varied significantly, and their fluctuations correlated with the presence of different environmental bacteria and various apiculture practices. CONCLUSIONS: Our results show that every hive possesses their own distinct microbiome and that this very defined fingerprint is affected by multiple factors such as the nectar and pollen gathered from local plants, the management of the apiaries and the bacterial communities living around the beehives. Based on our findings, we suggest that the microbiome of beehives could be used as a valuable biosensor informing of the health of the honeybees and their surrounding environment.

4.
NPJ Biofilms Microbiomes ; 8(1): 70, 2022 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-36038584

RESUMEN

Microbiomes are rife for biotechnological exploitation, particularly the rumen microbiome, due to their complexicity and diversity. In this study, antimicrobial peptides (AMPs) from the rumen microbiome (Lynronne 1, 2, 3 and P15s) were assessed for their therapeutic potential against seven clinical strains of Pseudomonas aeruginosa. All AMPs exhibited antimicrobial activity against all strains, with minimum inhibitory concentrations (MICs) ranging from 4-512 µg/mL. Time-kill kinetics of all AMPs at 3× MIC values against strains PAO1 and LES431 showed complete kill within 10 min to 4 h, although P15s was not bactericidal against PAO1. All AMPs significantly inhibited biofilm formation by strains PAO1 and LES431, and induction of resistance assays showed no decrease in activity against these strains. AMP cytotoxicity against human lung cells was also minimal. In terms of mechanism of action, the AMPs showed affinity towards PAO1 and LES431 bacterial membrane lipids, efficiently permeabilising the P. aeruginosa membrane. Transcriptome and metabolome analysis revealed increased catalytic activity at the cell membrane and promotion of ß-oxidation of fatty acids. Finally, tests performed with the Galleria mellonella infection model showed that Lynronne 1 and 2 were efficacious in vivo, with a 100% survival rate following treatment at 32 mg/kg and 128 mg/kg, respectively. This study illustrates the therapeutic potential of microbiome-derived AMPs against P. aeruginosa infections.


Asunto(s)
Microbiota , Infecciones por Pseudomonas , Animales , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Antimicrobianos , Humanos , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa
5.
NPJ Biofilms Microbiomes ; 8(1): 58, 2022 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-35835775

RESUMEN

Here we report two antimicrobial peptides (AMPs), HG2 and HG4 identified from a rumen microbiome metagenomic dataset, with activity against multidrug-resistant (MDR) bacteria, especially methicillin-resistant Staphylococcus aureus (MRSA) strains, a major hospital and community-acquired pathogen. We employed the classifier model design to analyse, visualise, and interpret AMP activities. This approach allowed in silico discrimination of promising lead AMP candidates for experimental evaluation. The lead AMPs, HG2 and HG4, are fast-acting and show anti-biofilm and anti-inflammatory activities in vitro and demonstrated little toxicity to human primary cell lines. The peptides were effective in vivo within a Galleria mellonella model of MRSA USA300 infection. In terms of mechanism of action, HG2 and HG4 appear to interact with the cytoplasmic membrane of target cells and may inhibit other cellular processes, whilst preferentially binding to bacterial lipids over human cell lipids. Therefore, these AMPs may offer additional therapeutic templates for MDR bacterial infections.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Animales , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Péptidos Catiónicos Antimicrobianos/farmacología , Lípidos/farmacología , Lípidos/uso terapéutico , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/metabolismo
6.
Sci Rep ; 11(1): 21092, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34702953

RESUMEN

The role of maternal investment in avian offspring has considerable life history implications on production traits and therefore potential for the poultry industry. A first generation (G1) of Japanese quail (Coturnix japonica) were bred from a 2 × 2 factorial design. Parents were fed either a control or methyl-enhanced (HiBET) diet, and their eggs were treated with a vehicle or corticosterone injection during day 5 of incubation. A subset of G1 birds were subjected to an open field trial (OFT) and capture-restraint stress protocol. Significant effects of HiBET diet were found on parental egg and liver weights, G1 hatch, liver and female reproductive tract weights, egg productivity, latency to leave the OFT central zone, male baseline 11-dehydrocorticosterone, and female androstenedione plasma concentrations. In ovo treatment significantly affected latency to return to the OFT, male baseline testosterone and androstenedione, and change in androstenedione plasma concentration. Diet by treatment interactions were significant for G1 liver weight and male baseline plasma concentrations of corticosterone. These novel findings suggest significant positive effects on reproduction, growth, precociousness, and hypothalamic-pituitary-adrenal axis function from enhanced methyl diets, and are important in understanding how in ovo stressors (representing maternal stress), affect the first offspring generation.


Asunto(s)
Alimentación Animal , Corticosterona/metabolismo , Coturnix/crecimiento & desarrollo , Óvulo/metabolismo , Reproducción , Selección Artificial , Animales , Femenino , Masculino , Especificidad de Órganos
7.
Anim Microbiome ; 3(1): 70, 2021 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-34627407

RESUMEN

BACKGROUND: Equine grass sickness (EGS) is a multiple systems neuropathy of grazing horses of unknown aetiology. An apparently identical disease occurs in cats, dogs, rabbits, hares, sheep, alpacas and llamas. Many of the risk factors for EGS are consistent with it being a pasture mycotoxicosis. To identify potential causal fungi, the gastrointestinal mycobiota of EGS horses were evaluated using targeted amplicon sequencing, and compared with those of two control groups. Samples were collected post mortem from up to 5 sites in the gastrointestinal tracts of EGS horses (EGS group; 150 samples from 54 horses) and from control horses that were not grazing EGS pastures and that had been euthanased for reasons other than neurologic and gastrointestinal diseases (CTRL group; 67 samples from 31 horses). Faecal samples were also collected from healthy control horses that were co-grazing pastures with EGS horses at disease onset (CoG group; 48 samples from 48 horses). RESULTS: Mycobiota at all 5 gastrointestinal sites comprised large numbers of fungi exhibiting diverse taxonomy, growth morphology, trophic mode and ecological guild. FUNGuild analysis parsed most phylotypes as ingested environmental microfungi, agaricoids and yeasts, with only 1% as gastrointestinal adapted animal endosymbionts. Mycobiota richness varied throughout the gastrointestinal tract and was greater in EGS horses. There were significant inter-group and inter-site differences in mycobiota structure. A large number of phylotypes were differentially abundant among groups. Key phylotypes (n = 56) associated with EGS were identified that had high abundance and high prevalence in EGS samples, significantly increased abundance in EGS samples, and were important determinants of the inter-group differences in mycobiota structure. Many key phylotypes were extremophiles and/or were predicted to produce cytotoxic and/or neurotoxic extrolites. CONCLUSIONS: This is the first reported molecular characterisation of the gastrointestinal mycobiota of grazing horses. Key phylotypes associated with EGS were identified. Further work is required to determine whether neurotoxic extrolites from key phylotypes contribute to EGS aetiology or whether the association of key phylotypes and EGS is a consequence of disease or is non-causal.

8.
Front Cell Infect Microbiol ; 11: 661830, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33959516

RESUMEN

Parasite derived extracellular vesicles (EVs) have been proposed to play key roles in the establishment and maintenance of infection. Calicophoron daubneyi is a newly emerging parasite of livestock with many aspects of its underpinning biology yet to be resolved. This research is the first in-depth investigation of EVs released by adult C. daubneyi. EVs were successfully isolated using both differential centrifugation and size exclusion chromatography (SEC), and morphologically characterized though transmission electron microscopy (TEM). EV protein components were characterized using a GeLC approach allowing the elucidation of comprehensive proteomic profiles for both their soluble protein cargo and surface membrane bound proteins yielding a total of 378 soluble proteins identified. Notably, EVs contained Sigma-class GST and cathepsin L and B proteases, which have previously been described in immune modulation and successful establishment of parasitic flatworm infections. SEC purified C. daubneyi EVs were observed to modulate rumen bacterial populations by likely increasing microbial species diversity via antimicrobial activity. This data indicates EVs released from adult C. daubneyi have a role in establishment within the rumen through the regulation of microbial populations offering new routes to control rumen fluke infection and to develop molecular strategies to improve rumen efficiency.


Asunto(s)
Enfermedades de los Bovinos , Vesículas Extracelulares , Trematodos , Animales , Bovinos , Proteómica , Rumen
9.
Genome Biol ; 21(1): 229, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32883364

RESUMEN

BACKGROUND: The Boran (Bos indicus), indigenous Zebu cattle breed from sub-Saharan Africa, is remarkably well adapted to harsh tropical environments. Due to financial constraints and low-quality forage, African livestock are rarely fed at 100% maintenance energy requirements (MER) and the effect of sub-optimal restricted feeding on the rumen microbiome of African Zebu cattle remains largely unexplored. We collected 24 rumen fluid samples from six Boran cattle fed at sub-optimal and optimal MER levels and characterised their rumen microbial composition by performing shotgun metagenomics and de novo assembly of metagenome-assembled genomes (MAGs). These MAGs were used as reference database to investigate the effect of diet restriction on the composition and functional potential of the rumen microbiome of African cattle. RESULTS: We report 1200 newly discovered MAGs from the rumen of Boran cattle. A total of 850 were dereplicated, and their uniqueness confirmed with pairwise comparisons (based on Mash distances) between African MAGs and other publicly available genomes from the rumen. A genome-centric investigation into sub-optimal diets highlighted a statistically significant effect on rumen microbial abundance profiles and a previously unobserved relationship between whole microbiome shifts in functional potential and taxon-level associations in metabolic pathways. CONCLUSIONS: This study is the first to identify 1200 high-quality African rumen-specific MAGs and provides further insight into the rumen function in harsh environments with food scarcity. The genomic information from the rumen microbiome of an indigenous African cattle breed sheds light on the microbiome contribution to rumen functionality and constitutes a vital resource in addressing food security in developing countries.


Asunto(s)
Bovinos/microbiología , Privación de Alimentos/fisiología , Microbioma Gastrointestinal , Metagenoma , Rumen/microbiología , África del Sur del Sahara , Animales
10.
Appl Environ Microbiol ; 85(22)2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31519656

RESUMEN

As previous studies have demonstrated a link between the porcine intestinal microbiome and feed efficiency (FE), microbiota manipulation may offer a means of improving FE in pigs. A fecal microbiota transplantation procedure (FMTp), using fecal extracts from highly feed-efficient pigs, was performed in pregnant sows (n = 11), with a control group (n = 11) receiving no FMTp. At weaning, offspring were allocated, within sow treatment, to (i) control (n = 67; no dietary supplement) or (ii) inulin (n = 65; 6-week dietary inulin supplementation) treatments. The sow FMTp, alone or in combination with inulin supplementation in offspring, reduced offspring body weight by 8.1 to 10.6 kg at ∼140 days of age, but there was no effect on feed intake. It resulted in better FE, greater bacterial diversity, and higher relative abundances of potentially beneficial bacterial taxa (Fibrobacter and Prevotella) in offspring. Due to the FMTp and/or inulin supplementation, relative abundances of potential pathogens (Chlamydia and Treponema) in the ileum and cecal concentrations of butyric acid were significantly lower. The maternal FMTp led to a greater number of jejunal goblet cells in offspring. Inulin supplementation alone did not affect growth or FE but upregulated duodenal genes linked to glucose and volatile fatty acid homeostasis and increased the mean platelet volume but reduced ileal propionic acid concentrations, granulocyte counts, and serum urea concentrations. Overall, the FMTp in pregnant sows, with or without dietary inulin supplementation in offspring, beneficially modulated offspring intestinal microbiota (albeit mostly low-relative-abundance taxa) and associated physiological parameters. Although FE was improved, the detrimental effect on growth limits the application of this FMTp-inulin strategy in commercial pig production.IMPORTANCE As previous research suggests a link between microbiota and FE, modulation of the intestinal microbiome may be effective in improving FE in pigs. The FMTp in gestating sows, alone or in combination with postweaning dietary inulin supplementation in offspring, achieved improvements in FE and resulted in a higher relative abundance of intestinal bacteria associated with fiber degradation and a lower relative abundance of potential pathogens. However, there was a detrimental effect on growth, although this may not be wholly attributable to microbiota transplantation, as antibiotic and other interventions were also part of the FMT regimen. Therefore, further work with additional control groups is needed to disentangle the effects of each component of the FMTp in order to develop a regimen with practical applications in pig production. Additional research based on findings from this study may also identify specific dietary supplements for the promotion/maintenance of the microbiota transferred via the maternal FMTp, thereby optimizing pig growth and FE.


Asunto(s)
Peso Corporal , Suplementos Dietéticos , Trasplante de Microbiota Fecal/veterinaria , Microbioma Gastrointestinal , Inulina/administración & dosificación , Alimentación Animal/análisis , Animales , Bacterias/clasificación , Bacterias/aislamiento & purificación , Metabolismo Energético , Heces/microbiología , Femenino , Embarazo , Porcinos/crecimiento & desarrollo , Destete
11.
Trials ; 20(1): 513, 2019 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-31426840

RESUMEN

There are many acknowledged benefits for the reuse of clinical trial data; from independent verification of published results to the evaluation of new hypotheses. However, the reuse of shared clinical trial data is not without obstacles. Here we present some of the issues and lessons learned from our own experiences in accessing and analyzing trial data; specifically, where we aim to combine and pool data from multiple different trials. In addition to issues around missing annotation and incomplete datasets, we identify trial-design complexity as a potential hurdle that may complicate downstream analyses. We address potential solutions and emphasize the need for benefits of transparent sharing and analysis of participant-level clinical trial data with appropriate risk mitigation, a matter important to efficient clinical research.


Asunto(s)
Ensayos Clínicos como Asunto , Difusión de la Información , Proyectos de Investigación , Humanos
12.
J Equine Sci ; 30(1): 1-5, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30944540

RESUMEN

Next-generation sequencing of DNA from nematode eggs has been utilised to give the first account of the equine 'nemabiome'. In all equine faecal samples investigated, multiple species of Strongylidae were detected, ranging from 7.5 (SEM 0.79) with 99+% identity to sequences in the NCBI database to 13.3 (SEM 0.80) with 90+% identity. This range is typical of the number of species described previously in morphological studies using large quantities of digesta per animal. However, the current method is non-invasive; relies on DNA analysis, avoiding the need for specialist microscopy identification; and can be carried out with small samples, providing significant advantages over current methods.

13.
PLoS Negl Trop Dis ; 13(2): e0007191, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30811394

RESUMEN

BACKGROUND: Robust protocols for the isolation of extracellular vesicles (EVs) from the rest of their excretory-secretory products are necessary for downstream studies and application development. The most widely used purification method of EVs for helminth pathogens is currently differential centrifugation (DC). In contrast, size exclusion chromatography (SEC) has been included in the purification pipeline for EVs from other pathogens, highlighting there is not an agreed research community 'gold standard' for EV isolation. In this case study, Fasciola hepatica from natural populations were cultured in order to collect EVs from culture media and evaluate a SEC or DC approach to pathogen helminth EV purification. METHODOLOGY/PRINCIPAL FINDINGS: Transmission electron and atomic force microscopy demonstrated that EVs prepared by SEC were both smaller in size and less diverse than EV resolved by DC. Protein quantification and Western blotting further demonstrated that SEC purification realised a higher EV purity to free excretory-secretory protein (ESP) yield ratio compared to DC approaches as evident by the reduction of soluble free cathepsin L proteases in SEC EV preparations. Proteomic analysis further highlighted DC contamination from ESP as shown by an increased diversity of protein identifications and unique peptide hits in DC EVs as compared to SEC EVs. In addition, SEC purified EVs contained less tegumental based proteins than DC purified EVs. CONCLUSIONS/SIGNIFICANCE: The data suggests that DC and SEC purification methods do not isolate equivalent EV population profiles and caution should be taken in the choice of EV purification utilised, with certain protocols for DC preparations including more free ES proteins and tegumental artefacts. We propose that SEC methods should be used for EV purification prior to downstream studies.


Asunto(s)
Centrifugación/métodos , Cromatografía en Gel/métodos , Vesículas Extracelulares , Fasciola hepatica/citología , Animales , Western Blotting , Medios de Cultivo , Microscopía Electrónica de Transmisión , Proteínas/análisis , Proteómica
14.
Front Microbiol ; 9: 2184, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30283417

RESUMEN

Understanding rumen plant-microbe interactions is central for development of novel methodologies allowing improvements in ruminant nutrient use efficiency. This study investigated rumen bacterial colonization of fresh plant material and changes in plant chemistry over a period of 24 h period using three different fresh forages: Lolium perenne (perennial ryegrass; PRG), Lotus corniculatus (bird's foot trefoil; BFT) and Trifolium pratense (red clover; RC). We show using 16S rRNA gene ion torrent sequencing that plant epiphytic populations present pre-incubation (0 h) were substantially different to those attached post incubations in the presence of rumen fluid on all forages. Thereafter primary and secondary colonization events were evident as defined by changes in relative abundances of attached bacteria and changes in plant chemistry, as assessed using Fourier transform infrared (FTIR) spectroscopy. For PRG colonization, primary colonization occurred for up to 4 h and secondary colonization from 4 h onward. The changes from primary to secondary colonization occurred significantly later with BFT and RC, with primary colonization being up to 6 h and secondary colonization post 6 h of incubation. Across all 3 forages the main colonizing bacteria present at all time points post-incubation were Prevotella, Pseudobutyrivibrio, Ruminococcus, Olsenella, Butyrivibrio, and Anaeroplasma (14.2, 5.4, 1.9, 2.7, 1.8, and 2.0% on average respectively), with Pseudobutyrivibrio and Anaeroplasma having a higher relative abundance during secondary colonization. Using CowPI, we predict differences between bacterial metabolic function during primary and secondary colonization. Specifically, our results infer an increase in carbohydrate metabolism in the bacteria attached during secondary colonization, irrespective of forage type. The CowPI data coupled with the FTIR plant chemistry data suggest that attached bacterial function is similar irrespective of forage type, with the main changes occurring between primary and secondary colonization. These data suggest that the sward composition of pasture may have major implications for the temporal availability of nutrients for animal.

16.
Front Microbiol ; 9: 1095, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29887853

RESUMEN

Metataxonomic 16S rDNA based studies are a commonplace and useful tool in the research of the microbiome, but they do not provide the full investigative power of metagenomics and metatranscriptomics for revealing the functional potential of microbial communities. However, the use of metagenomic and metatranscriptomic technologies is hindered by high costs and skills barrier necessary to generate and interpret the data. To address this, a tool for Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) was developed for inferring the functional potential of an observed microbiome profile, based on 16S data. This allows functional inferences to be made from metataxonomic 16S rDNA studies with little extra work or cost, but its accuracy relies on the availability of completely sequenced genomes of representative organisms from the community being investigated. The rumen microbiome is an example of a community traditionally underrepresented in genome and sequence databases, but recent efforts by projects such as the Global Rumen Census and Hungate 1000 have resulted in a wide sampling of 16S rDNA profiles and almost 500 fully sequenced microbial genomes from this environment. Using this information, we have developed "CowPI," a focused version of the PICRUSt tool provided for use by the wider scientific community in the study of the rumen microbiome. We evaluated the accuracy of CowPI and PICRUSt using two 16S datasets from the rumen microbiome: one generated from rDNA and the other from rRNA where corresponding metagenomic and metatranscriptomic data was also available. We show that the functional profiles predicted by CowPI better match estimates for both the meta-genomic and transcriptomic datasets than PICRUSt, and capture the higher degree of genetic variation and larger pangenomes of rumen organisms. Nonetheless, whilst being closer in terms of predictive power for the rumen microbiome, there were differences when compared to both the metagenomic and metatranscriptome data and so we recommend, where possible, functional inferences from 16S data should not replace metagenomic and metatranscriptomic approaches. The tool can be accessed at http://www.cowpi.org and is provided to the wider scientific community for use in the study of the rumen microbiome.

17.
Int J Parasitol Drugs Drug Resist ; 8(2): 213-222, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29649665

RESUMEN

Uncontrolled host immunological reactions directed against tissue-trapped eggs precipitate a potentially lethal, pathological cascade responsible for schistosomiasis. Blocking schistosome egg production, therefore, presents a strategy for simultaneously reducing immunopathology as well as limiting disease transmission in endemic or emerging areas. We recently demonstrated that the ribonucleoside analogue 5-azacytidine (5-AzaC) inhibited Schistosoma mansoni oviposition, egg maturation and ovarian development. While these anti-fecundity effects were associated with a loss of DNA methylation, other molecular processes affected by 5-AzaC were not examined at the time. By comparing the transcriptomes of 5-AzaC-treated females to controls, we provide evidence that this ribonucleoside analogue also modulates other crucial aspects of schistosome egg-laying biology. For example, S. mansoni gene products associated with amino acid-, carbohydrate-, fatty acid-, nucleotide- and tricarboxylic acid (TCA)- homeostasis are all dysregulated in 5-AzaC treated females. To validate the metabolic pathway most significantly affected by 5-AzaC, amino acid metabolism, nascent protein synthesis was subsequently quantified in adult schistosomes. Here, 5-AzaC inhibited this process by 68% ±16.7% (SEM) in male- and 81% ±4.8% (SEM) in female-schistosomes. Furthermore, the transcriptome data indicated that adult female stem cells were also affected by 5-AzaC. For instance, 40% of transcripts associated with proliferating schistosome cells were significantly down-regulated by 5-AzaC. This finding correlated with a considerable reduction (95%) in the number of 5-ethynyl-2'-deoxyuridine (EdU) positive cells found in 5-AzaC-treated females. In addition to protein coding genes, the effect that 5-AzaC had on repetitive element expression was also assessed. Here, 46 repeats were found differentially transcribed between 5-AzaC-treated and control females with long terminal repeat (LTR) and DNA transposon classes being amongst the most significant. This study demonstrates that the anti-fecundity activity of 5-AzaC affects more than just DNA methylation in schistosome parasites. Further characterisation of these processes may reveal novel targets for schistosomiasis control.


Asunto(s)
Azacitidina/farmacología , Fertilidad/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Schistosoma mansoni/efectos de los fármacos , Células Madre/efectos de los fármacos , Animales , Ciclo del Ácido Cítrico/efectos de los fármacos , Metilación de ADN/efectos de los fármacos , Femenino , Perfilación de la Expresión Génica , Schistosoma mansoni/citología , Schistosoma mansoni/genética , Schistosoma mansoni/fisiología , Esquistosomiasis mansoni/parasitología , Esquistosomiasis mansoni/prevención & control , Esquistosomiasis mansoni/transmisión , Análisis de Secuencia de ARN , Secuencias Repetidas Terminales/genética , Transcriptoma
18.
mSystems ; 3(3)2018.
Artículo en Inglés | MEDLINE | ID: mdl-29577087

RESUMEN

Previous studies suggest a link between intestinal microbiota and porcine feed efficiency (FE). Therefore, we investigated whether fecal microbiota transplantation (FMT) in sows and/or neonatal offspring, using inocula derived from highly feed-efficient pigs, could improve offspring FE. Pregnant sows were assigned to control or FMT treatments and the subsequent offspring to control treatment, FMT once (at birth), or FMT four times (between birth and weaning). FMT altered sow fecal and colostrum microbiota compositions and resulted in lighter offspring body weight at 70 and 155 days of age when administered to sows and/or offspring. This was accompanied by FMT-associated changes within the offspring's intestinal microbiota, mostly in the ileum. These included transiently higher fecal bacterial diversity and load and numerous compositional differences at the phylum and genus levels (e.g., Spirochaetes and Bacteroidetes at high relative abundances and mostly members of Clostridia, respectively), as well as differences in the abundances of predicted bacterial pathways. In addition, intestinal morphology was negatively impacted, duodenal gene expression altered, and serum protein and cholesterol concentrations reduced due to FMT in sows and/or offspring. Taken together, the results suggest poorer absorptive capacity and intestinal health, most likely explaining the reduced body weight. An additive effect of FMT in sows and offspring also occurred for some parameters. Although these findings have negative implications for the practical use of the FMT regime used here for improving FE in pigs, they nonetheless demonstrate the enormous impact of early-life intestinal microbiota on the host phenotype. IMPORTANCE Here, for the first time, we investigate FMT as a novel strategy to modulate the porcine intestinal microbiota in an attempt to improve FE in pigs. However, reprogramming the maternal and/or offspring microbiome by using fecal transplants derived from highly feed-efficient pigs did not recapitulate the highly efficient phenotype in the offspring and, in fact, had detrimental effects on lifetime growth. Although these findings may not be wholly attributable to microbiota transplantation, as antibiotic and purgative were also part of the regime in sows, similar effects were also seen in offspring, in which these interventions were not used. Nonetheless, additional work is needed to unravel the effects of each component of the FMT regime and to provide additional mechanistic insights. This may lead to the development of an FMT procedure with practical applications for the improvement of FE in pigs, which could in turn improve the profitability of pig production.

19.
Int J Parasitol ; 48(3-4): 297-307, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29273284

RESUMEN

In the ancient Lake Baikal, Russia, amphipod crustaceans have undergone a spectacular adaptive radiation, resulting in a diverse community of species. A survey of microsporidian parasites inhabiting endemic and non-endemic amphipod host species at the margins of Lake Baikal indicates that the endemic amphipods harbour many microsporidian parasite groups associated with amphipods elsewhere in Eurasia. While these parasites may have undergone a degree of adaptive radiation within the lake, there is little evidence of host specificity. Furthermore, a lack of reciprocal monophyly indicates that exchanges of microsporidia between Baikalian and non-Baikalian hosts have occurred frequently in the past and may be ongoing. Conversely, limitations to parasite exchange between Baikalian and non-Baikalian host populations at the margins of the lake are implied by differences in parasite prevalence and lack of shared microsporidian haplotypes between the two host communities. While amphipod hosts have speciated sympatrically within Lake Baikal, the parasites appear instead to have accumulated, moving into the lake from external amphipod populations on multiple occasions to exploit the large and diverse community of endemic amphipods in Lake Baikal.


Asunto(s)
Adaptación Biológica , Anfípodos/parasitología , Lagos/parasitología , Microsporidios/crecimiento & desarrollo , Anfípodos/clasificación , Anfípodos/fisiología , Animales , Teorema de Bayes , Biodiversidad , Clonación Molecular , ADN de Hongos/química , ADN Ribosómico/química , Europa (Continente) , Especificidad del Huésped , Microsporidios/clasificación , Microsporidios/genética , Filogenia , Estanques/parasitología , Ríos/parasitología , Federación de Rusia
20.
Artículo en Inglés | MEDLINE | ID: mdl-29214045

RESUMEN

Antimicrobial peptides (AMPs) are promising drug candidates to target multi-drug resistant bacteria. The rumen microbiome presents an underexplored resource for the discovery of novel microbial enzymes and metabolites, including AMPs. Using functional screening and computational approaches, we identified 181 potentially novel AMPs from a rumen bacterial metagenome. Here, we show that three of the selected AMPs (Lynronne-1, Lynronne-2 and Lynronne-3) were effective against numerous bacterial pathogens, including methicillin-resistant Staphylococcus aureus (MRSA). No decrease in MRSA susceptibility was observed after 25 days of sub-lethal exposure to these AMPs. The AMPs bound preferentially to bacterial membrane lipids and induced membrane permeability leading to cytoplasmic leakage. Topical administration of Lynronne-1 (10% w/v) to a mouse model of MRSA wound infection elicited a significant reduction in bacterial counts, which was comparable to treatment with 2% mupirocin ointment. Our findings indicate that the rumen microbiome may provide viable alternative antimicrobials for future therapeutic application.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...