Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Sci Rep ; 14(1): 12609, 2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824194

RESUMEN

Peripheral artery disease (PAD) is characterized by varying severity of arterial stenosis, exercise induced claudication, malperfused tissue precluding normal healing and skeletal muscle dysfunction. Revascularization interventions improve circulation, but post-reperfusion changes within the skeletal muscle are not well characterized. This study investigates if revascularization enhanced hemodynamics increases walking performance with concurrent improvement of mitochondrial function and reverses abnormal skeletal muscle morphological features that develop with PAD. Fifty-eight patients completed walking performance testing and muscle biopsy before and 6 months after revascularization procedures. Muscle fiber morphology, desmin structure, and mitochondria respiration assessments before and after the revascularization were evaluated. Revascularization improved limb hemodynamics, walking function, and muscle morphology. Qualitatively not all participants recovered normal structural architecture of desmin in the myopathic myofibers after revascularization. Heterogenous responses in the recovery of desmin structure following revascularization may be caused by other underlying factors not reversed with hemodynamic improvements. Revascularization interventions clinically improve patient walking ability and can reverse the multiple subcellular functional and structural abnormalities in muscle cells. Further study is needed to characterize desmin structural remodeling with improvements in skeletal muscle morphology and function.


Asunto(s)
Desmina , Músculo Esquelético , Enfermedad Arterial Periférica , Humanos , Desmina/metabolismo , Enfermedad Arterial Periférica/metabolismo , Enfermedad Arterial Periférica/patología , Enfermedad Arterial Periférica/cirugía , Masculino , Femenino , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Anciano , Persona de Mediana Edad , Claudicación Intermitente/cirugía , Claudicación Intermitente/metabolismo , Claudicación Intermitente/patología , Caminata , Hemodinámica
2.
J Mol Biol ; : 168640, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38844044

RESUMEN

Computational free energy-based methods have the potential to significantly improve throughput and decrease costs of protein design efforts. Such methods must reach a high level of reliability, accuracy, and automation to be effectively deployed in practical industrial settings in a way that impacts protein design projects. Here, we present a benchmark study for the calculation of relative changes in protein-protein binding affinity for single point mutations across a variety of systems from the literature, using free energy perturbation (FEP+) calculations. We describe a method for robust treatment of alternate protonation states for titratable amino acids, which yields improved correlation with and reduced error compared to experimental binding free energies. Following careful analysis of the largest outlier cases in our dataset, we assess limitations of the default FEP+ protocols and introduce an automated script which identifies probable outlier cases that may require additional scrutiny and calculates an empirical correction for a subset of charge-related outliers. Through a series of three additional case study systems, we discuss how protein FEP+ can be applied to real-world protein design projects, and suggest areas of further study.

3.
EXCLI J ; 23: 523-533, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38741727

RESUMEN

Peripheral artery disease (PAD) is an atherosclerotic disease impacting over 200 million individuals and the prevalence increases with age. PAD occurs when plaque builds up within the peripheral arteries, leading to reduced blood flow and oxygen supply to the outer extremities. Individuals who experience PAD suffer from ischemia, which is typically accompanied by significant damage to skeletal muscles. Additionally, this tissue damage affects mitochondria, causing them to become dysregulated and dysfunctional, resulting in decreased metabolic rates. As there is no known cure for PAD, researchers are exploring potential therapeutic targets by examining coexisting cardiovascular conditions and metabolic risk factors, such as the aging process. Among these comorbidities, type-two diabetes mellitus and obesity are particularly common in PAD cases. These conditions, along with aging itself, are associated with an elevated accumulation of ectopic lipids within skeletal muscles, similar to what is observed in PAD. Researchers have attempted to reduce excess lipid accumulation by increasing the rate of fatty acid beta oxidation. Manipulating acetyl coenzyme A carboxylase 2, a key regulatory protein of fatty acid beta oxidation, has been the primary focus of such research. When acetyl coenzyme A carboxylase 2 is inhibited, it interrupts the conversion of acetyl-CoA into malonyl-CoA, resulting in an increase in the rate of fatty acid beta oxidation. By utilizing samples from PAD patients and applying the pharmacological strategies developed for acetyl coenzyme A carboxylase 2 in diabetes and obesity to PAD, a potential new therapeutic avenue may emerge, offering hope for improved quality of life for individuals suffering from PAD.

4.
bioRxiv ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38712280

RESUMEN

Computational free energy-based methods have the potential to significantly improve throughput and decrease costs of protein design efforts. Such methods must reach a high level of reliability, accuracy, and automation to be effectively deployed in practical industrial settings in a way that impacts protein design projects. Here, we present a benchmark study for the calculation of relative changes in protein-protein binding affinity for single point mutations across a variety of systems from the literature, using free energy perturbation (FEP+) calculations. We describe a method for robust treatment of alternate protonation states for titratable amino acids, which yields improved correlation with and reduced error compared to experimental binding free energies. Following careful analysis of the largest outlier cases in our dataset, we assess limitations of the default FEP+ protocols and introduce an automated script which identifies probable outlier cases that may require additional scrutiny and calculates an empirical correction for a subset of charge-related outliers. Through a series of three additional case study systems, we discuss how protein FEP+ can be applied to real-world protein design projects, and suggest areas of further study.

5.
Transl Res ; 260: 17-31, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37220835

RESUMEN

Peripheral artery disease (PAD) causes an ischemic myopathy contributing to patient disability and mortality. Most preclinical models to date use young, healthy rodents with limited translatability to human disease. Although PAD incidence increases with age, and obesity is a common comorbidity, the pathophysiologic association between these risk factors and PAD myopathy is unknown. Using our murine model of PAD, we sought to elucidate the combined effect of age, diet-induced obesity and chronic hindlimb ischemia (HLI) on (1) mobility, (2) muscle contractility, and markers of muscle (3) mitochondrial content and function, (4) oxidative stress and inflammation, (5) proteolysis, and (6) cytoskeletal damage and fibrosis. Following 16-weeks of high-fat, high-sucrose, or low-fat, low-sucrose feeding, HLI was induced in 18-month-old C57BL/6J mice via the surgical ligation of the left femoral artery at 2 locations. Animals were euthanized 4-weeks post-ligation. Results indicate mice with and without obesity shared certain myopathic changes in response to chronic HLI, including impaired muscle contractility, altered mitochondrial electron transport chain complex content and function, and compromised antioxidant defense mechanisms. However, the extent of mitochondrial dysfunction and oxidative stress was significantly greater in obese ischemic muscle compared to non-obese ischemic muscle. Moreover, functional impediments, such as delayed post-surgical recovery of limb function and reduced 6-minute walking distance, as well as accelerated intramuscular protein breakdown, inflammation, cytoskeletal damage, and fibrosis were only evident in mice with obesity. As these features are consistent with human PAD myopathy, our model could be a valuable tool to test new therapeutics.


Asunto(s)
Enfermedades Musculares , Enfermedad Arterial Periférica , Humanos , Ratones , Animales , Lactante , Músculo Esquelético/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Enfermedades Musculares/etiología , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología , Enfermedad Arterial Periférica/metabolismo , Obesidad/metabolismo , Isquemia/etiología , Isquemia/metabolismo , Dieta , Inflamación/patología , Fibrosis , Miembro Posterior/irrigación sanguínea
6.
J Am Coll Surg ; 236(4): 588-598, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36656266

RESUMEN

BACKGROUND: Peripheral arterial disease (PAD) causes leg muscle damage due to inadequate perfusion and increases cardiovascular events and mortality 2- to 3-fold. It is unclear if PAD is a biomarker for high-risk cardiovascular disease or if skeletal muscle injury harms arterial health. The objective of this work is to test if serum myoglobin levels (myoglobinemia) are a marker of PAD, and if so, whether myoglobin impairs vascular health. STUDY DESIGN: Patient blood samples were collected from PAD and control (no PAD) patients and interrogated for myoglobin concentrations and nitric oxide bioavailability. Patient mortality over time was captured from the medical record. Myoglobin activity was tested on endothelial cells and arterial function. RESULTS: Myoglobin is a biomarker for symptomatic PAD and was inversely related to nitric oxide bioavailability; 200 ng/mL myoglobin in vitro increased endothelial cell permeability in vitro and decreased nitrate bioavailability. Ex vivo, 100 ng/mL myoglobin increased vascular tone in naive murine aortas approximately 1.5 times, impairing absolute vessel relaxation. In vivo, we demonstrated that myoglobinemia caused impaired flow-mediated dilation in a porcine model. Patients presenting with myoglobin levels of 100 ng/mL or greater had significantly more deaths than those with myoglobin levels of less than 100 ng/mL. CONCLUSIONS: Using a combination of patient data, in vitro, ex vivo, and in vivo testing, we found that myoglobin is a biomarker for symptomatic PAD and a potent regulator of arterial health that can increase vascular tone, increase vascular permeability, and cause endothelial dysfunction, all of which may contribute to the vulnerability of PAD patients to cardiovascular events and death.


Asunto(s)
Células Endoteliales , Enfermedad Arterial Periférica , Animales , Ratones , Porcinos , Células Endoteliales/metabolismo , Óxido Nítrico , Mioglobina , Biomarcadores
7.
Methods ; 180: 111-126, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32422249

RESUMEN

Complex integral membrane proteins, which are embedded in the cell surface lipid bilayer by multiple transmembrane spanning helices, encompass families of proteins which are important target classes for drug discovery. These protein families include G protein-coupled receptors, ion channels and transporters. Although these proteins have typically been targeted by small molecule drugs and peptides, the high specificity of monoclonal antibodies offers a significant opportunity to selectively modulate these target proteins. However, it remains the case that isolation of antibodies with desired pharmacological function(s) has proven difficult due to technical challenges in preparing membrane protein antigens suitable to support antibody drug discovery. In this review recent progress in defining strategies for generation of membrane protein antigens is outlined. We also highlight antibody isolation strategies which have generated antibodies which bind the membrane protein and modulate the protein function.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/aislamiento & purificación , Descubrimiento de Drogas/métodos , Canales Iónicos/inmunología , Proteínas de la Membrana/inmunología , Receptores Acoplados a Proteínas G/inmunología , Animales , Bacterias/metabolismo , Expresión Génica/genética , Expresión Génica/inmunología , Células HEK293 , Humanos , Insectos/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/aislamiento & purificación , Receptores Acoplados a Proteínas G/química , Proteínas Recombinantes , Levaduras/metabolismo
8.
Pain ; 160(9): 1989-2003, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31045747

RESUMEN

P2X4 is a ligand-gated ion channel implicated in neuropathic pain. Drug discovery efforts targeting P2X4 have been unsuccessful largely because of the difficulty in engineering specificity and selectivity. Here, we describe for the first time the generation of a panel of diverse monoclonal antibodies (mAbs) to human and mouse P2X4, capable of both positive and negative modulation of channel function. The affinity-optimised anti-P2X4 mAb IgG#151-LO showed exquisite selectivity for human P2X4 and induced potent and complete block of P2X4 currents. Site-directed mutagenesis of P2X4 revealed the head domain as a key interaction site for inhibitory mAbs. Inhibition of spinal P2X4 either by intrathecal delivery of an anti-P2X4 mAb or by systemic delivery of an anti-P2X4 bispecific mAb with enhanced blood-spinal cord barrier permeability produced long-lasting (>7 days) analgesia in a mouse model of neuropathic pain. We therefore propose that inhibitory mAbs binding the head domain of P2X4 have therapeutic potential for the treatment of neuropathic pain.


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/metabolismo , Neuralgia/metabolismo , Neuralgia/prevención & control , Receptores Purinérgicos P2X4/metabolismo , Animales , Células Cultivadas , Femenino , Células HEK293 , Humanos , Inyecciones Espinales , Ratones , Ratones Endogámicos C57BL , Unión Proteica/fisiología , Antagonistas del Receptor Purinérgico P2X/administración & dosificación , Antagonistas del Receptor Purinérgico P2X/metabolismo , Ratas , Ratas Sprague-Dawley
9.
Sci Rep ; 9(1): 1605, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30733557

RESUMEN

Plasminogen activator inhibitor-1 (PAI-1) is a serine protease inhibitor (serpin) that regulates fibrinolysis, cell adhesion and cell motility via its interactions with plasminogen activators and vitronectin. PAI-1 has been shown to play a role in a number of diverse pathologies including cardiovascular diseases, obesity and cancer and is therefore an attractive therapeutic target. However the multiple patho-physiological roles of PAI-1, and understanding the relative contributions of these in any one disease setting, make the development of therapeutically relevant molecules challenging. Here we describe the identification and characterisation of fully human antibody MEDI-579, which binds with high affinity and specificity to the active form of human PAI-1. MEDI-579 specifically inhibits serine protease interactions with PAI-1 while conserving vitronectin binding. Crystallographic analysis reveals that this specificity is achieved through direct binding of MEDI-579 Fab to the reactive centre loop (RCL) of PAI-1 and at the same exosite used by both tissue and urokinase plasminogen activators (tPA and uPA). We propose that MEDI-579 acts by directly competing with proteases for RCL binding and as such is able to modulate the interaction of PAI-1 with tPA and uPA in a way not previously described for a human PAI-1 inhibitor.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Inhibidor 1 de Activador Plasminogénico/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Neutralizantes/química , Especificidad de Anticuerpos , Humanos , Ratones , Modelos Moleculares , Inhibidor 1 de Activador Plasminogénico/química , Conformación Proteica , Ratas
10.
Curr Protoc Pharmacol ; 82(1): e44, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30168908

RESUMEN

Ion channels play crucial roles in physiology by modulation of cellular functions that include electrical excitability, secretion, cell migration, and gene transcription. They are an important target class for drug discovery and have historically been targeted using small molecule approaches. A significant opportunity exists to target these channels with antibodies and alternative forms of biologics. Antibodies display high specificity, selectivity, and affinity for their target antigen, thus having the potential to target ion channels very precisely. Nonetheless, isolating antibodies to ion channels is challenging due to the difficulties in expression and purification of ion channels in a format suitable for antibody drug discovery and due to the complexities of screening for function. In this overview, we focus on an array of screening methods, ranging from direct antibody binding screens to complex electrophysiological assays, and describe how these assays can be used to identify functional monoclonal antibodies. We also provide some insights into specific considerations which are required to enable these screens to be used for antibody drug discovery. © 2018 by John Wiley & Sons, Inc.


Asunto(s)
Anticuerpos Monoclonales/fisiología , Canales Iónicos/fisiología , Animales , Antígenos/fisiología , Bioensayo , Descubrimiento de Drogas , Humanos
11.
BioDrugs ; 32(4): 339-355, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29934752

RESUMEN

Cell surface membrane proteins comprise a wide array of structurally and functionally diverse proteins involved in a variety of important physiological and homeostatic processes. Complex integral membrane proteins, which are embedded in the lipid bilayer by multiple transmembrane-spanning helices, are represented by families of proteins that are important target classes for drug discovery. Such protein families include G-protein-coupled receptors, ion channels and transporters. Although these targets have typically been the domain of small-molecule drugs, the exquisite specificity of monoclonal antibodies offers a significant opportunity to selectively modulate these target proteins. Nevertheless, the isolation of antibodies with desired pharmacological functions has proved difficult because of technical challenges in preparing membrane protein antigens for antibody drug discovery. In this review, we describe recent progress in defining strategies for the generation of membrane protein antigens. We also describe antibody-isolation strategies that identify antibodies that bind the membrane protein and modulate protein function.


Asunto(s)
Anticuerpos Monoclonales/aislamiento & purificación , Antígenos/inmunología , Descubrimiento de Drogas/métodos , Proteínas de la Membrana/inmunología , Animales , Humanos
12.
MAbs ; 10(1): 104-117, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28952876

RESUMEN

C5a is a potent anaphylatoxin that modulates inflammation through the C5aR1 and C5aR2 receptors. The molecular interactions between C5a-C5aR1 receptor are well defined, whereas C5a-C5aR2 receptor interactions are poorly understood. Here, we describe the generation of a human antibody, MEDI7814, that neutralizes C5a and C5adesArg binding to the C5aR1 and C5aR2 receptors, without affecting complement-mediated bacterial cell killing. Unlike other anti-C5a mAbs described, this antibody has been shown to inhibit the effects of C5a by blocking C5a binding to both C5aR1 and C5aR2 receptors. The crystal structure of the antibody in complex with human C5a reveals a discontinuous epitope of 22 amino acids. This is the first time the epitope for an antibody that blocks C5aR1 and C5aR2 receptors has been described, and this work provides a basis for molecular studies aimed at further understanding the C5a-C5aR2 receptor interaction. MEDI7814 has therapeutic potential for the treatment of acute inflammatory conditions in which both C5a receptors may mediate inflammation, such as sepsis or renal ischemia-reperfusion injury.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Afinidad de Anticuerpos , Complemento C5a/antagonistas & inhibidores , Receptor de Anafilatoxina C5a/antagonistas & inhibidores , Receptores de Quimiocina/antagonistas & inhibidores , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/inmunología , Especificidad de Anticuerpos , Sitios de Unión de Anticuerpos , Complemento C5a/química , Complemento C5a/inmunología , Complemento C5a/metabolismo , Mapeo Epitopo/métodos , Epítopos , Células HEK293 , Humanos , Unión Proteica , Conformación Proteica , Ingeniería de Proteínas , Receptor de Anafilatoxina C5a/química , Receptor de Anafilatoxina C5a/inmunología , Receptor de Anafilatoxina C5a/metabolismo , Receptores de Quimiocina/química , Receptores de Quimiocina/inmunología , Receptores de Quimiocina/metabolismo , Relación Estructura-Actividad
13.
Protein Eng Des Sel ; 31(10): 389-398, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30753634

RESUMEN

Membrane proteins play key roles in the evolution of numerous diseases and as a result have become the most dominant class of targets for therapeutic intervention. However, their poor expression and detection oftentimes prohibit drug discovery and screening efforts. Herein, we have developed an approach, named 'Tag-on-Demand' that exploits amber suppression to control the expression of 'tagged' membrane proteins for detection and selections, yet can be turned off for expression of the protein in its native form. Utilizing an engineered Chinese hamster ovary cell line capable of efficient amber suppression, we evaluated the expression of a diverse panel of model membrane proteins and demonstrated the enrichment of cells with improved expression profiles, where ~200-800% improvement in total protein expression levels were observed over pre-sorted populations after a single round of fluorescence-activated cell sorting. Furthermore, results were most striking for the typically difficult-to-express G protein-coupled receptor, CXCR2, where ~2.5-fold improvement in surface expression was observed. We anticipate that the Tag-on-Demand approach will be suitable not only for membrane protein cell line development but also for the development of intracellular and secreted protein cell lines in expression systems for which amber suppression technology exists, including bacterial, yeast, insect and cell-free expression systems.


Asunto(s)
Codón de Terminación/genética , Ingeniería Genética/métodos , Proteínas de la Membrana/genética , Animales , Células CHO , Cricetulus , Evaluación Preclínica de Medicamentos , Expresión Génica , Células HEK293 , Humanos
14.
MAbs ; 9(5): 735-741, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28475474

RESUMEN

Le STUDIUM conference was held November 24-25, 2016 in Tours, France as a satellite workshop of the 5th meeting of the French GDR 3545 on "G Protein-Coupled Receptors (GPCRs) -From Physiology to Drugs," which was held in Tours during November 22-24, 2016. The conference gathered speakers from academia and industry considered to be world leaders in the molecular pharmacology and signaling of GPCRs, with a particular interest in the development of therapeutic GPCR antibodies (Abs). The main topics were new advances and challenges in the development of antibodies targeting GPCRs and their potential applications to the study of the structure and function of GPCRs, as well as their implication in physiology and pathophysiology. The conference included 2 sessions, with the first dedicated to the recent advances in methodological strategies used for GPCR immunization using thermo-stabilized and purified GPCRs, and the development of various formats of Abs such as monoclonal IgG, single-chain variable fragments and nanobodies (Nbs) by in vitro and in silico approaches. The second session focused on GPCR Nbs as a "hot" field of research on GPCRs. This session started with discussion of the pioneering Nbs developed against GPCRs and their application to structural studies, then transitioned to talks on original ex vivo and in vivo studies on GPCR-selective Nbs showing promising therapeutic applications of Nbs in important physiologic systems, such as the central nervous and the immune systems, as well as in cancer. The conference ended with the consensus that Abs and especially Nbs are opening a new era of research on GPCR structure, pharmacology and pathophysiology.


Asunto(s)
Receptores Acoplados a Proteínas G , Transducción de Señal , Anticuerpos de Dominio Único , Animales , Congresos como Asunto , Humanos
15.
Protein Eng Des Sel ; 30(4): 303-311, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28130326

RESUMEN

High levels of protein expression are key to the successful development and manufacture of a therapeutic antibody. Here, we describe two related antibodies, Ab001 and Ab008, where Ab001 shows a markedly lower level of expression relative to Ab008 when stably expressed in Chinese hamster ovary cells. We use single-gene expression vectors and structural analysis to show that the reduced titer is associated with the VL CDR2 of Ab001. We adopted two approaches to improve the expression of Ab001. First, we used mutagenesis to change single amino-acid residues in the Ab001 VL back to the equivalent Ab008 residues but this resulted in limited improvements in expression. In contrast when we used an in silico structure-based design approach to generate a set of five individual single-point variants in a discrete region of the VL, all exhibited significantly improved expression relative to Ab001. The most successful of these, D53N, exhibited a 25-fold increase in stable transfectants relative to Ab001. The functional potency of these VL-modified antibodies was unaffected. We expect that this in silico engineering strategy can be used to improve the expression of other antibodies and proteins.


Asunto(s)
Sustitución de Aminoácidos , Interleucina-13/antagonistas & inhibidores , Anticuerpos de Cadena Única , Humanos , Mutagénesis , Mutación Missense , Anticuerpos de Cadena Única/biosíntesis , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/genética
16.
Pharmacol Ther ; 169: 113-123, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27153991

RESUMEN

The development of recombinant antibody therapeutics continues to be a significant area of growth in the pharmaceutical industry with almost 50 approved monoclonal antibodies on the market in the US and Europe. Therapeutic drug targets such as soluble cytokines, growth factors and single transmembrane spanning receptors have been successfully targeted by recombinant monoclonal antibodies and the development of new product candidates continues. Despite this growth, however, certain classes of important disease targets have remained intractable to therapeutic antibodies due to the complexity of the target molecules. These complex target molecules include G protein-coupled receptors and ion channels which represent a large target class for therapeutic intervention with monoclonal antibodies. Although these targets have typically been addressed by small molecule approaches, the exquisite specificity of antibodies provides a significant opportunity to provide selective modulation of these important regulators of cell function. Given this opportunity, a significant effort has been applied to address the challenges of targeting these complex molecules and a number of targets are linked to the pathophysiology of respiratory diseases. In this review, we provide a summary of the importance of GPCRs and ion channels involved in respiratory disease and discuss advantages offered by antibodies as therapeutics at these targets. We highlight some recent GPCRs and ion channels linked to respiratory disease mechanisms and describe in detail recent progress made in the strategies for discovery of functional antibodies against challenging membrane protein targets such as GPCRs and ion channels.


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Terapia Molecular Dirigida , Enfermedades Respiratorias/terapia , Animales , Anticuerpos Monoclonales/farmacología , Aprobación de Drogas , Diseño de Fármacos , Humanos , Canales Iónicos/inmunología , Receptores Acoplados a Proteínas G/inmunología , Enfermedades Respiratorias/inmunología , Enfermedades Respiratorias/fisiopatología
17.
Biochem Soc Trans ; 44(3): 831-7, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27284048

RESUMEN

The development of recombinant antibody therapeutics is a significant area of growth in the pharmaceutical industry with almost 50 approved monoclonal antibodies on the market in the US and Europe. Despite this growth, however, certain classes of important molecular targets have remained intractable to therapeutic antibodies due to complexity of the target molecules. These complex target molecules include G-protein-coupled receptors and ion channels which represent a large potential target class for therapeutic intervention with monoclonal antibodies. Although these targets have typically been addressed by small molecule approaches, the exquisite specificity of antibodies provides a significant opportunity to provide selective modulation of these target proteins. Given this opportunity, substantial effort has been applied to address the technical challenges of targeting these complex membrane proteins with monoclonal antibodies. In this review recent progress made in the strategies for discovery of functional monoclonal antibodies for these challenging membrane protein targets is addressed.


Asunto(s)
Anticuerpos Monoclonales , Canales Iónicos/inmunología , Receptores Acoplados a Proteínas G/inmunología , Animales , Humanos
18.
PLoS One ; 11(5): e0155340, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27195765

RESUMEN

The expression and subsequent purification of mammalian recombinant proteins is of critical importance to many areas of biological science. To maintain the appropriate tertiary structure and post-translational modifications of such proteins, transient mammalian expression systems are often adopted. The successful utilisation of these systems is, however, not always forthcoming and some recombinant proteins prove refractory to expression in mammalian hosts. In this study we focussed on the role of different N-terminal signal peptides and residues immediately downstream, in influencing the level of secreted recombinant protein obtained from suspension HEK293 cells. Using secreted alkaline phosphatase (SEAP) as a model protein, we identified that the +1/+2 downstream residues flanking a heterologous signal peptide significantly affect secreted levels. By incorporating these findings we conducted a comparison of different signal peptide sequences and identified the most productive as secrecon, a computationally-designed sequence. Importantly, in the context of the secrecon signal peptide and SEAP, we also demonstrated a clear preference for specific amino acid residues at the +1 position (e.g. alanine), and a detrimental effect of others (cysteine, proline, tyrosine and glutamine). When proteins that naturally contain these "undesirable" residues at the +1 position were expressed with their native signal peptide, the heterologous secrecon signal peptide, or secrecon with an additional alanine at the +1 or +1 and +2 position, the level of expression differed significantly and in an unpredictable manner. For each protein, however, at least one of the panel of signal peptide/adjacent amino acid combinations enabled successful recombinant expression. In this study, we highlight the important interplay between a signal peptide and its adjacent amino acids in enabling protein expression, and we describe a strategy that could enable recombinant proteins that have so far proved refractory to expression in HEK293 cells, to be produced in sufficient quantities to answer important biological questions.


Asunto(s)
Aminoácidos/metabolismo , Señales de Clasificación de Proteína , Proteínas Recombinantes/metabolismo , Fosfatasa Alcalina/metabolismo , Transporte Biológico , Medios de Cultivo Condicionados/química , Vectores Genéticos , Células HEK293 , Humanos , Interferón-alfa/metabolismo , Procesamiento Proteico-Postraduccional
19.
J Biomol Screen ; 21(1): 24-34, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26450103

RESUMEN

Calcitonin gene-related peptide (CGRP) is a small neuropeptide and a potent vasodilator that is widely associated with chronic pain and migraine. An antibody that inhibits CGRP function would be a potential therapeutic for treatment of these disorders. Here we describe the isolation of highly potent antibodies to CGRP from phage and ribosome display libraries and characterization of their epitope, species cross-reactivity, kinetics, and functional activity. Homogenous time-resolved fluorescence (HTRF) binding assays identified antibodies with the desired species cross-reactivity from naïve libraries, and HTRF epitope competition assays were used to characterize and group scFv by epitope. The functional inhibition of CGRP and species cross-reactivity of purified scFv and antibodies were subsequently confirmed using cAMP assays. We show that epitope competition assays could be used as a surrogate for functional cell-based assays during affinity maturation, in combination with scFv off-rate ranking by biolayer interferometry (BLI). This is the first time it has been shown that off-rate ranking can be predictive of functional activity for anti-CGRP antibodies. Here we demonstrate how, by using just four simple assays, diverse panels of antibodies to CGRP can be identified. These assay formats have potential utility in the identification of antibodies to other therapeutic targets.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Bioensayo/métodos , Péptido Relacionado con Gen de Calcitonina/inmunología , Línea Celular , Epítopos/inmunología , Fluorescencia , Humanos
20.
J Biomol Screen ; 20(4): 454-67, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25473082

RESUMEN

Ion channels play critical roles in physiology and disease by modulation of cellular functions such as electrical excitability, secretion, cell migration, and gene transcription. Ion channels represent an important target class for drug discovery that has been largely addressed, to date, using small-molecule approaches. A significant opportunity exists to target these channels with antibodies and alternative formats of biologics. Antibodies display high specificity and affinity for their target antigen, and they have the potential to target ion channels very selectively. Nevertheless, isolating antibodies to this target class is challenging due to the difficulties in expression and purification of ion channels in a format suitable for antibody drug discovery in addition to the complexity of screening for function. In this article, we will review the current state of ion channel biologics discovery and the progress that has been made. We will also highlight the challenges in isolating functional antibodies to these targets and how these challenges may be addressed. Finally, we also illustrate successful approaches to isolating functional monoclonal antibodies targeting ion channels by way of a number of case studies drawn from recent publications.


Asunto(s)
Anticuerpos/inmunología , Canales Iónicos/inmunología , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA