Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
ACS Infect Dis ; 10(2): 436-452, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38240689

RESUMEN

Haemophilus influenzae is a commensal of the human upper respiratory tract that can infect diverse host niches due, at least in part, to its ability to withstand both endogenous and host-mediated oxidative stresses. Here, we show that hfeA, a gene previously linked to iron import, is essential for H. influenzae manganese recruitment via the HfeBCD transporter. Structural analyses show that metal binding in HfeA uses a unique mechanism that involves substantial rotation of the C-terminal lobe of the protein. Disruption of hfeA reduced H. influenzae manganese acquisition and was associated with decreased growth under aerobic conditions, impaired manganese-superoxide dismutase activity, reduced survival in macrophages, and changes in biofilm production in the presence of superoxide. Collectively, this work shows that HfeA contributes to H. influenzae manganese acquisition and virulence attributes. High conservation of the hfeABCD permease in Haemophilus species suggests that it may serve similar roles in other pathogenic Pasteurellaceae.


Asunto(s)
Haemophilus influenzae , Proteínas de Transporte de Membrana , Humanos , Haemophilus influenzae/genética , Haemophilus influenzae/metabolismo , Proteínas de Transporte de Membrana/genética , Manganeso/metabolismo , Biopelículas , Homeostasis
2.
ACS Infect Dis ; 9(12): 2409-2422, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-37878861

RESUMEN

Here, we employed an integrated metabolomics and transcriptomics approach to investigate the molecular mechanism(s) of action of ceftazidime/avibactam against a pan-drug-resistant K. pneumoniae clinical isolate from a patient with urinary tract infection. Ceftazidime/avibactam induced time-dependent perturbations in the metabolome and transcriptome of the bacterium, mainly at 6 h, with minimal effects at 1 and 3 h. Metabolomics analysis revealed a notable reduction in essential lipids involved in outer membrane glycerolipid biogenesis. This disruption effect extended to peptidoglycan and lipopolysaccharide biosynthetic pathways, including lipid A and O-antigen assembly. Importantly, ceftazidime/avibactam not only affected the final steps of peptidoglycan biosynthesis in the periplasm, a common mechanism of ceftazidime action, but also influenced the synthesis of lipid-linked intermediates and early stages of cytoplasmic peptidoglycan synthesis. Furthermore, ceftazidime/avibactam substantially inhibited central carbon metabolism (e.g., the pentose phosphate pathway and tricarboxylic acid cycle). Consistently, the dysregulation of genes governing these metabolic pathways aligned with the metabolomics findings. Certain metabolomics and transcriptomics signatures associated with ceftazidime resistance were also perturbed. Consistent with the primary target of antibiotic activity, biochemical assays also confirmed the direct impact of ceftazidime/avibactam on peptidoglycan production. This study explored the intricate interactions of ceftazidime and avibactam within bacterial cells, including their impact on cell envelope biogenesis and central carbon metabolism. Our findings revealed the complexities of how ceftazidime/avibactam operates, such as hindering peptidoglycan formation in different cellular compartments. In summary, this study confirms the existing hypotheses about the antibacterial and resistance mechanisms of ceftazidime/avibactam while uncovering novel insights, including its impact on lipopolysaccharide formation.


Asunto(s)
Ceftazidima , Infecciones por Klebsiella , Humanos , Ceftazidima/farmacología , Klebsiella pneumoniae/genética , Transcriptoma , Lipopolisacáridos , Peptidoglicano , Infecciones por Klebsiella/microbiología , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Perfilación de la Expresión Génica , Carbono/farmacología
3.
Biosens Bioelectron ; 241: 115697, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37751650

RESUMEN

Nicotine exposure can lead to neurological impairments and brain tumors, and a label-free and nondestructive detection technique is urgently required by the scientific community to assess the effects of nicotine on neural cells. Herein, a terahertz (THz) time-domain attenuated total reflection (TD-ATR) spectroscopy approach is reported, by which the effects of nicotine on normal and cancerous neural cells, i.e., HEB and U87 cells, are successfully investigated in a label/stain-free and nondestructive manner. The obtained THz absorption coefficients of HEB cells exposed to low-dose nicotine and high-dose nicotine are smaller and larger, respectively, than the untreated cells. In contrast, the THz absorption coefficients of U87 cells treated by nicotine are always smaller than the untreated cells. The THz absorption coefficients can be well related to the proliferation properties (cell number and compositional changes) and morphological changes of neural cells, by which different types of neural cells are differentiated and the viabilities of neural cells treated by nicotine are reliably assessed. Collectively, this work sheds new insights on the effects of nicotine on neural cells, and provides a useful tool (THz TD-ATR spectroscopy) for the study of chemical-cell interactions.

4.
Elife ; 122023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37410078

RESUMEN

Antibiotic resistance is driven by selection, but the degree to which a bacterial strain's evolutionary history shapes the mechanism and strength of resistance remains an open question. Here, we reconstruct the genetic and evolutionary mechanisms of carbapenem resistance in a clinical isolate of Klebsiella quasipneumoniae. A combination of short- and long-read sequencing, machine learning, and genetic and enzymatic analyses established that this carbapenem-resistant strain carries no carbapenemase-encoding genes. Genetic reconstruction of the resistance phenotype confirmed that two distinct genetic loci are necessary in order for the strain to acquire carbapenem resistance. Experimental evolution of the carbapenem-resistant strains in growth conditions without the antibiotic revealed that both loci confer a significant cost and are readily lost by de novo mutations resulting in the rapid evolution of a carbapenem-sensitive phenotype. To explain how carbapenem resistance evolves via multiple, low-fitness single-locus intermediates, we hypothesised that one of these loci had previously conferred adaptation to another antibiotic. Fitness assays in a range of drug concentrations show how selection in the antibiotic ceftazidime can select for one gene (blaDHA-1) potentiating the evolution of carbapenem resistance by a single mutation in a second gene (ompK36). These results show how a patient's treatment history might shape the evolution of antibiotic resistance and could explain the genetic basis of carbapenem-resistance found in many enteric-pathogens.


Asunto(s)
Carbapenémicos , Klebsiella pneumoniae , Carbapenémicos/farmacología , Klebsiella pneumoniae/genética , Antibacterianos/farmacología , beta-Lactamasas/genética , Proteínas Bacterianas/genética , Klebsiella/genética , Fenotipo , Pruebas de Sensibilidad Microbiana
5.
Nat Commun ; 14(1): 1530, 2023 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-36934086

RESUMEN

Even in the setting of optimal resuscitation in high-income countries severe sepsis and septic shock have a mortality of 20-40%, with antibiotic resistance dramatically increasing this mortality risk. To develop a reference dataset enabling the identification of common bacterial targets for therapeutic intervention, we applied a standardized genomic, transcriptomic, proteomic and metabolomic technological framework to multiple clinical isolates of four sepsis-causing pathogens: Escherichia coli, Klebsiella pneumoniae species complex, Staphylococcus aureus and Streptococcus pyogenes. Exposure to human serum generated a sepsis molecular signature containing global increases in fatty acid and lipid biosynthesis and metabolism, consistent with cell envelope remodelling and nutrient adaptation for osmoprotection. In addition, acquisition of cholesterol was identified across the bacterial species. This detailed reference dataset has been established as an open resource to support discovery and translational research.


Asunto(s)
Sepsis , Infecciones Estafilocócicas , Humanos , Antibacterianos/uso terapéutico , Proteómica , Sepsis/microbiología , Bacterias , Escherichia coli , Klebsiella , Pruebas de Sensibilidad Microbiana
6.
Microbiol Spectr ; 10(4): e0151721, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35913154

RESUMEN

Despite the importance of encapsulation in bacterial pathogenesis, the biochemical mechanisms and forces that underpin retention of capsule by encapsulated bacteria are poorly understood. In Gram-negative bacteria, there may be interactions between lipopolysaccharide (LPS) core and capsule polymers, between capsule polymers with retained acyl carriers and the outer membrane, and in some bacteria, between the capsule polymers and Wzi, an outer membrane protein lectin. Our transposon studies in Klebsiella pneumoniae B5055 identified additional genes that, when insertionally inactivated, resulted in reduced encapsulation. Inactivation of the gene waaL, which encodes the ligase responsible for attaching the repeated O antigen of LPS to the LPS core, resulted in a significant reduction in capsule retention, measured by atomic force microscopy. This reduction in encapsulation was associated with increased sensitivity to human serum and decreased virulence in a murine model of respiratory infection and, paradoxically, with increased biofilm formation. The capsule in the WaaL mutant was physically smaller than that of the Wzi mutant of K. pneumoniae B5055. These results suggest that interactions between surface carbohydrate polymers may enhance encapsulation, a key phenotype in bacterial virulence, and provide another target for the development of antimicrobials that may avoid resistance issues associated with growth inhibition. IMPORTANCE Bacterial capsules, typically comprised of complex sugars, enable pathogens to avoid key host responses to infection, including phagocytosis. These capsules are synthesized within the bacteria, exported through the outer envelope, and then secured to the external surface of the organism by a force or forces that are incompletely described. This study shows that in the important hospital pathogen Klebsiella pneumoniae, the polysaccharide capsule is retained by interactions with other surface sugars, especially the repeated sugar molecule of the LPS molecule in Gram-negative bacteria known as "O antigen." This O antigen is joined to the LPS molecule by ligation, and loss of the enzyme responsible for ligation, a protein called WaaL, results in reduced encapsulation. Since capsules are essential to the virulence of many pathogens, WaaL might provide a target for new antimicrobial development, critical to the control of pathogens like K. pneumoniae that have become highly drug resistant.


Asunto(s)
Infecciones por Klebsiella , Klebsiella pneumoniae , Animales , Cápsulas Bacterianas/metabolismo , Cápsulas/análisis , Cápsulas/metabolismo , Humanos , Infecciones por Klebsiella/metabolismo , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Lipopolisacáridos/metabolismo , Ratones , Antígenos O/análisis , Antígenos O/metabolismo , Polímeros/análisis , Polímeros/metabolismo , Azúcares/metabolismo
7.
Microbiol Spectr ; 9(1): e0102321, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34431721

RESUMEN

The production of capsular polysaccharides by Klebsiella pneumoniae protects the bacterial cell from harmful environmental factors such as antimicrobial compounds and infection by bacteriophages (phages). To bypass this protective barrier, some phages encode polysaccharide-degrading enzymes referred to as depolymerases to provide access to cell surface receptors. Here, we characterized the phage RAD2, which infects K. pneumoniae strains that produce the widespread, hypervirulence-associated K2-type capsular polysaccharide. Using transposon-directed insertion sequencing, we have shown that the production of capsule is an absolute requirement for efficient RAD2 infection by serving as a first-stage receptor. We have identified the depolymerase responsible for recognition and degradation of the capsule, determined that the depolymerase forms globular appendages on the phage virion tail tip, and present the cryo-electron microscopy structure of the RAD2 capsule depolymerase at 2.7-Å resolution. A putative active site for the enzyme was identified, comprising clustered negatively charged residues that could facilitate the hydrolysis of target polysaccharides. Enzymatic assays coupled with mass spectrometric analyses of digested oligosaccharide products provided further mechanistic insight into the hydrolase activity of the enzyme, which, when incubated with K. pneumoniae, removes the capsule and sensitizes the cells to serum-induced killing. Overall, these findings expand our understanding of how phages target the Klebsiella capsule for infection, providing a framework for the use of depolymerases as antivirulence agents against this medically important pathogen. IMPORTANCE Klebsiella pneumoniae is a medically important pathogen that produces a thick protective capsule that is essential for pathogenicity. Phages are natural predators of bacteria, and many encode diverse "capsule depolymerases" which specifically degrade the capsule of their hosts, an exploitable trait for potential therapies. We have determined the first structure of a depolymerase that targets the clinically relevant K2 capsule and have identified its putative active site, providing hints to its mechanism of action. We also show that Klebsiella cells treated with a recombinant form of the depolymerase are stripped of capsule, inhibiting their ability to grow in the presence of serum, demonstrating the anti-infective potential of these robust and readily producible enzymes against encapsulated bacterial pathogens such as K. pneumoniae.


Asunto(s)
Cápsulas Bacterianas/virología , Bacteriófagos/enzimología , Klebsiella pneumoniae/virología , Polisacárido Liasas/metabolismo , Proteínas Virales/metabolismo , Cápsulas Bacterianas/metabolismo , Cápsulas Bacterianas/ultraestructura , Bacteriófagos/genética , Bacteriófagos/fisiología , Microscopía por Crioelectrón , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Klebsiella pneumoniae/ultraestructura , Polisacárido Liasas/genética , Proteínas Virales/genética
8.
mSystems ; 6(3): e0024221, 2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34042467

RESUMEN

Antimicrobial resistance (AMR) continues to evolve as a major threat to human health, and new strategies are required for the treatment of AMR infections. Bacteriophages (phages) that kill bacterial pathogens are being identified for use in phage therapies, with the intention to apply these bactericidal viruses directly into the infection sites in bespoke phage cocktails. Despite the great unsampled phage diversity for this purpose, an issue hampering the roll out of phage therapy is the poor quality annotation of many of the phage genomes, particularly for those from infrequently sampled environmental sources. We developed a computational tool called STEP3 to use the "evolutionary features" that can be recognized in genome sequences of diverse phages. These features, when integrated into an ensemble framework, achieved a stable and robust prediction performance when benchmarked against other prediction tools using phages from diverse sources. Validation of the prediction accuracy of STEP3 was conducted with high-resolution mass spectrometry analysis of two novel phages, isolated from a watercourse in the Southern Hemisphere. STEP3 provides a robust computational approach to distinguish specific and universal features in phages to improve the quality of phage cocktails and is available for use at http://step3.erc.monash.edu/. IMPORTANCE In response to the global problem of antimicrobial resistance, there are moves to use bacteriophages (phages) as therapeutic agents. Selecting which phages will be effective therapeutics relies on interpreting features contributing to shelf-life and applicability to diagnosed infections. However, the protein components of the phage virions that dictate these properties vary so much in sequence that best estimates suggest failure to recognize up to 90% of them. We have utilized this diversity in evolutionary features as an advantage, to apply machine learning for prediction accuracy for diverse components in phage virions. We benchmark this new tool showing the accurate recognition and evaluation of phage component parts using genome sequence data of phages from undersampled environments, where the richest diversity of phage still lies.

9.
Soft Matter ; 17(8): 2042-2049, 2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33592087

RESUMEN

Turgor pressure and envelope elasticity of bacterial cells are two mechanical parameters that play a dominant role in cellular deformation, division, and motility. However, a clear understanding of these two properties is lacking because of their strongly interconnected mechanisms. This study established a nanoindentation method to precisely measure the turgor pressure and envelope elasticity of live bacteria. The indentation force-depth curves of Klebsiella pneumoniae bacteria were recorded with atomic force microscopy. Through combination of dimensional analysis and numerical simulations, an explicit expression was derived to decouple the two properties of individual bacteria from the nanoindentation curves. We show that the Young's modulus of bacterial envelope is sensitive to the external osmotic environment, and the turgor pressure is significantly dependent on the external osmotic stress. This method can not only quantify the turgor pressure and envelope elasticity of bacteria, but also help resolve the mechanical behaviors of bacteria in different environments.


Asunto(s)
Klebsiella pneumoniae , Fenómenos Mecánicos , Elasticidad , Microscopía de Fuerza Atómica , Presión Osmótica
10.
mBio ; 11(2)2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32291303

RESUMEN

In Gram-negative bacteria, the permeability of the outer membrane governs rates of antibiotic uptake and thus the efficacy of antimicrobial treatment. Hydrophilic drugs like ß-lactam antibiotics depend on diffusion through pore-forming outer membrane proteins to reach their intracellular targets. In this study, we investigated the distribution of porin genes in more than 2,700 Klebsiella isolates and found a widespread loss of OmpK35 functionality, particularly in those strains isolated from clinical environments. Using a defined set of outer-membrane-remodeled mutants, the major porin OmpK35 was shown to be largely responsible for ß-lactam permeation. Sequence similarity network analysis characterized the porin protein subfamilies and led to discovery of a new porin family member, OmpK38. Structure-based comparisons of OmpK35, OmpK36, OmpK37, OmpK38, and PhoE showed near-identical pore frameworks but defining differences in the sequence characteristics of the extracellular loops. Antibiotic sensitivity profiles of isogenic Klebsiella pneumoniae strains, each expressing a different porin as its dominant pore, revealed striking differences in the antibiotic permeability characteristics of each channel in a physiological context. Since K. pneumoniae is a nosocomial pathogen with high rates of antimicrobial resistance and concurrent mortality, these experiments elucidate the role of porins in conferring specific drug-resistant phenotypes in a global context, informing future research to combat antimicrobial resistance in K. pneumoniaeIMPORTANCEKlebsiella pneumoniae is a pathogen of humans with high rates of mortality and a recognized global rise in incidence of carbapenem-resistant K. pneumoniae (CRKP). The outer membrane of K. pneumoniae forms a permeability barrier that modulates the ability of antibiotics to reach their intracellular target. OmpK35, OmpK36, OmpK37, OmpK38, PhoE, and OmpK26 are porins in the outer membrane of K. pneumoniae, demonstrated here to have a causative relationship to drug resistance phenotypes in a physiological context. The data highlight that currently trialed combination treatments with a carbapenem and ß-lactamase inhibitors could be effective on porin-deficient K. pneumoniae Together with structural data, the results reveal the role of outer membrane proteome remodeling in antimicrobial resistance of K. pneumoniae and point to the role of extracellular loops, not channel parameters, in drug permeation. This significant finding warrants care in the development of phage therapies for K. pneumoniae infections, given the way porin expression will be modulated to confer phage-resistant-and collateral drug-resistant-phenotypes in K. pneumoniae.


Asunto(s)
Antibacterianos/farmacología , Proteínas de la Membrana Bacteriana Externa/genética , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/genética , Porinas/genética , Proteoma , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Permeabilidad de la Membrana Celular , Farmacorresistencia Bacteriana Múltiple , Genómica , Salud Global , Humanos , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/metabolismo , Pruebas de Sensibilidad Microbiana , Porinas/metabolismo
11.
J Med Microbiol ; 69(3): 402-413, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32223838

RESUMEN

Introduction. Autoinducer-2 (AI-2) quorum sensing is a bacterial communication system that responds to cell density. The system requires luxS activity to produce AI-2, which can regulate gene expression and processes such as biofilm formation.Aim. To investigate the role of luxS in biofilm formation and gene expression in the nosocomial pathogen Klebsiella pneumoniae.Methodology. A ΔluxS gene deletion was made in K. pneumoniae KP563, an extensively drug-resistant isolate. AI-2 production was assessed in wild-type and ΔluxS strains grown in media supplemented with different carbohydrates. Potential roles of luxS in biofilm formation were investigated using a microtiter plate biofilm assay and scanning electron microscopy. Quantitative RT-PCR evaluated the expression of lipopolysaccharide (wzm and wbbM), polysaccharide (pgaA), and type 3 fimbriae (mrkA) synthesis genes in wild-type and ΔluxS mutant biofilm extracts.Results. AI-2 production was dependent on the presence of luxS. AI-2 accumulation was highest during early stationary phase in media supplemented with glucose, sucrose or glycerol. Changes in biofilm architecture were observed in the ΔluxS mutant, with less surface coverage and reduced macrocolony formation; however, no differences in biofilm formation between the wild-type and ΔluxS mutant using a microtiter plate assay were observed. In ΔluxS mutant biofilm extracts, the expression of wzm was down-regulated, and the expression of pgaA, which encodes a porin for poly-ß-1,6-N-acetyl-d-glucosamine (PNAG) polysaccharide secretion, was upregulated.Conclusion. Relationships among AI-2-mediated quorum sensing, biofilm formation and gene expression of outer-membrane components were identified in K. pneumoniae. These inter-connected processes could be important for bacterial group behaviour and persistence.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Liasas de Carbono-Azufre/metabolismo , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/genética , Percepción de Quorum , Proteínas Bacterianas/genética , Liasas de Carbono-Azufre/genética , Humanos , Klebsiella pneumoniae/crecimiento & desarrollo , Klebsiella pneumoniae/fisiología , Mutación
12.
Biochem J ; 476(22): 3435-3453, 2019 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-31675053

RESUMEN

Key physiological differences between bacterial and mammalian metabolism provide opportunities for the development of novel antimicrobials. We examined the role of the multifunctional enzyme S-adenosylhomocysteine/Methylthioadenosine (SAH/MTA) nucleosidase (Pfs) in the virulence of S. enterica var Typhimurium (S. Typhimurium) in mice, using a defined Pfs deletion mutant (i.e. Δpfs). Pfs was essential for growth of S. Typhimurium in M9 minimal medium, in tissue cultured cells, and in mice. Studies to resolve which of the three known functions of Pfs were key to murine virulence suggested that downstream production of autoinducer-2, spermidine and methylthioribose were non-essential for Salmonella virulence in a highly sensitive murine model. Mass spectrometry revealed the accumulation of SAH in S. Typhimurium Δpfs and complementation of the Pfs mutant with the specific SAH hydrolase from Legionella pneumophila reduced SAH levels, fully restored growth ex vivo and the virulence of S. Typhimurium Δpfs for mice. The data suggest that Pfs may be a legitimate target for antimicrobial development, and that the key role of Pfs in bacterial virulence may be in reducing the toxic accumulation of SAH which, in turn, suppresses an undefined methyltransferase.


Asunto(s)
Proteínas Bacterianas/metabolismo , N-Glicosil Hidrolasas/metabolismo , Purina-Nucleósido Fosforilasa/metabolismo , Infecciones por Salmonella/microbiología , Salmonella typhimurium/enzimología , Salmonella typhimurium/patogenicidad , Animales , Proteínas Bacterianas/genética , Femenino , Regulación Bacteriana de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Enzimas Multifuncionales/genética , Enzimas Multifuncionales/metabolismo , N-Glicosil Hidrolasas/genética , Purina-Nucleósido Fosforilasa/genética , S-Adenosilhomocisteína/metabolismo , Salmonella typhimurium/genética , Virulencia
13.
Sci Rep ; 9(1): 2392, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30787414

RESUMEN

Klebsiella pneumoniae is a major threat to public health with the emergence of isolates resistant to most, if not all, useful antibiotics. We present an in-depth analysis of 178 extended-spectrum beta-lactamase (ESBL)-producing K. pneumoniae collected from patients resident in a region of Pakistan, during the period 2010-2012, when the now globally-distributed carbapenemase bla-NDM-1 was being acquired by Klebsiella. We observed two dominant lineages, but neither the overall resistance profile nor virulence-associated factors, explain their evolutionary success. Phenotypic analysis of resistance shows few differences between the acquisition of resistance genes and the phenotypic resistance profile, including beta-lactam antibiotics that were used to treat ESBL-positive strains. Resistance against these drugs could be explained by inhibitor-resistant beta-lactamase enzymes, carbapenemases or ampC type beta-lactamases, at least one of which was detected in most, but not all relevant strains analysed. Complete genomes for six selected strains are reported, these provide detailed insights into the mobile elements present in these isolates during the initial spread of NDM-1. The unexplained success of some lineages within this pool of highly resistant strains, and the discontinuity between phenotypic resistance and genotype at the macro level, indicate that intrinsic mechanisms contribute to competitive advantage and/or resistance.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple/genética , Infecciones por Klebsiella , Klebsiella pneumoniae , Inhibidores de beta-Lactamasas , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/epidemiología , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/aislamiento & purificación , Klebsiella pneumoniae/patogenicidad , Pakistán , Virulencia , Inhibidores de beta-Lactamasas/farmacología , Inhibidores de beta-Lactamasas/uso terapéutico , beta-Lactamasas/efectos de los fármacos
14.
Brief Bioinform ; 20(3): 931-951, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-29186295

RESUMEN

In the course of infecting their hosts, pathogenic bacteria secrete numerous effectors, namely, bacterial proteins that pervert host cell biology. Many Gram-negative bacteria, including context-dependent human pathogens, use a type IV secretion system (T4SS) to translocate effectors directly into the cytosol of host cells. Various type IV secreted effectors (T4SEs) have been experimentally validated to play crucial roles in virulence by manipulating host cell gene expression and other processes. Consequently, the identification of novel effector proteins is an important step in increasing our understanding of host-pathogen interactions and bacterial pathogenesis. Here, we train and compare six machine learning models, namely, Naïve Bayes (NB), K-nearest neighbor (KNN), logistic regression (LR), random forest (RF), support vector machines (SVMs) and multilayer perceptron (MLP), for the identification of T4SEs using 10 types of selected features and 5-fold cross-validation. Our study shows that: (1) including different but complementary features generally enhance the predictive performance of T4SEs; (2) ensemble models, obtained by integrating individual single-feature models, exhibit a significantly improved predictive performance and (3) the 'majority voting strategy' led to a more stable and accurate classification performance when applied to predicting an ensemble learning model with distinct single features. We further developed a new method to effectively predict T4SEs, Bastion4 (Bacterial secretion effector predictor for T4SS), and we show our ensemble classifier clearly outperforms two recent prediction tools. In summary, we developed a state-of-the-art T4SE predictor by conducting a comprehensive performance evaluation of different machine learning algorithms along with a detailed analysis of single- and multi-feature selections.


Asunto(s)
Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos , Aprendizaje Automático , Algoritmos , Teorema de Bayes , Máquina de Vectores de Soporte
15.
PLoS Biol ; 16(8): e2006026, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30071011

RESUMEN

Iron is essential for life. Accessing iron from the environment can be a limiting factor that determines success in a given environmental niche. For bacteria, access of chelated iron from the environment is often mediated by TonB-dependent transporters (TBDTs), which are ß-barrel proteins that form sophisticated channels in the outer membrane. Reports of iron-bearing proteins being used as a source of iron indicate specific protein import reactions across the bacterial outer membrane. The molecular mechanism by which a folded protein can be imported in this way had remained mysterious, as did the evolutionary process that could lead to such a protein import pathway. How does the bacterium evolve the specificity factors that would be required to select and import a protein encoded on another organism's genome? We describe here a model whereby the plant iron-bearing protein ferredoxin can be imported across the outer membrane of the plant pathogen Pectobacterium by means of a Brownian ratchet mechanism, thereby liberating iron into the bacterium to enable its growth in plant tissues. This import pathway is facilitated by FusC, a member of the same protein family as the mitochondrial processing peptidase (MPP). The Brownian ratchet depends on binding sites discovered in crystal structures of FusC that engage a linear segment of the plant protein ferredoxin. Sequence relationships suggest that the bacterial gene encoding FusC has previously unappreciated homologues in plants and that the protein import mechanism employed by the bacterium is an evolutionary echo of the protein import pathway in plant mitochondria and plastids.


Asunto(s)
Hierro/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Pectobacterium/metabolismo , Bacterias/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/metabolismo , Ferredoxinas/metabolismo , Metaloendopeptidasas/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Transporte de Proteínas/fisiología , Peptidasa de Procesamiento Mitocondrial
16.
Mol Microbiol ; 109(5): 584-599, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29873128

RESUMEN

Members of the Omp85 protein superfamily have important roles in Gram-negative bacteria, with the archetypal protein BamA being ubiquitous given its essential function in the assembly of outer membrane proteins. In some bacterial lineages, additional members of the family exist and, in most of these cases, the function of the protein is unknown. We detected one of these Omp85 proteins in the pathogen Klebsiella pneumoniae B5055, and refer to the protein as BamK. Here, we show that bamK is a conserved element in the core genome of Klebsiella, and its expression rescues a loss-of-function ∆bamA mutant. We developed an E. coli model system to measure and compare the specific activity of BamA and BamK in the assembly reaction for the critical substrate LptD, and find that BamK is as efficient as BamA in assembling the native LptDE complex. Comparative structural analysis revealed that the major distinction between BamK and BamA is in the external facing surface of the protein, and we discuss how such changes may contribute to a mechanism for resistance against infection by bacteriophage.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/genética , Infecciones por Escherichia coli/microbiología , Escherichia coli/patogenicidad , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/patogenicidad , Animales , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Genoma Bacteriano/genética , Klebsiella pneumoniae/genética , Masculino , Ratones , Ratones Endogámicos BALB C
17.
J Biol Chem ; 293(24): 9506-9519, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29720401

RESUMEN

Methionine (Met) is an amino acid essential for many important cellular and biosynthetic functions, including the initiation of protein synthesis and S-adenosylmethionine-mediated methylation of proteins, RNA, and DNA. The de novo biosynthetic pathway of Met is well conserved across prokaryotes but absent from vertebrates, making it a plausible antimicrobial target. Using a systematic approach, we examined the essentiality of de novo methionine biosynthesis in Salmonella enterica serovar Typhimurium, a bacterial pathogen causing significant gastrointestinal and systemic diseases in humans and agricultural animals. Our data demonstrate that Met biosynthesis is essential for S. Typhimurium to grow in synthetic medium and within cultured epithelial cells where Met is depleted in the environment. During systemic infection of mice, the virulence of S. Typhimurium was not affected when either de novo Met biosynthesis or high-affinity Met transport was disrupted alone, but combined disruption in both led to severe in vivo growth attenuation, demonstrating a functional redundancy between de novo biosynthesis and acquisition as a mechanism of sourcing Met to support growth and virulence for S. Typhimurium during infection. In addition, our LC-MS analysis revealed global changes in the metabolome of S. Typhimurium mutants lacking Met biosynthesis and also uncovered unexpected interactions between Met and peptidoglycan biosynthesis. Together, this study highlights the complexity of the interactions between a single amino acid, Met, and other bacterial processes leading to virulence in the host and indicates that disrupting the de novo biosynthetic pathway alone is likely to be ineffective as an antimicrobial therapy against S. Typhimurium.


Asunto(s)
Metionina/metabolismo , Infecciones por Salmonella/metabolismo , Salmonella typhimurium/crecimiento & desarrollo , Salmonella typhimurium/patogenicidad , Animales , Transporte Biológico , Vías Biosintéticas , Femenino , Células HeLa , Humanos , Masculino , Metaboloma , Ratones , Ratones Endogámicos C57BL , Salmonella typhimurium/metabolismo , Virulencia
18.
Brief Bioinform ; 19(1): 148-161, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27777222

RESUMEN

Bacterial effector proteins secreted by various protein secretion systems play crucial roles in host-pathogen interactions. In this context, computational tools capable of accurately predicting effector proteins of the various types of bacterial secretion systems are highly desirable. Existing computational approaches use different machine learning (ML) techniques and heterogeneous features derived from protein sequences and/or structural information. These predictors differ not only in terms of the used ML methods but also with respect to the used curated data sets, the features selection and their prediction performance. Here, we provide a comprehensive survey and benchmarking of currently available tools for the prediction of effector proteins of bacterial types III, IV and VI secretion systems (T3SS, T4SS and T6SS, respectively). We review core algorithms, feature selection techniques, tool availability and applicability and evaluate the prediction performance based on carefully curated independent test data sets. In an effort to improve predictive performance, we constructed three ensemble models based on ML algorithms by integrating the output of all individual predictors reviewed. Our benchmarks demonstrate that these ensemble models outperform all the reviewed tools for the prediction of effector proteins of T3SS and T4SS. The webserver of the proposed ensemble methods for T3SS and T4SS effector protein prediction is freely available at http://tbooster.erc.monash.edu/index.jsp. We anticipate that this survey will serve as a useful guide for interested users and that the new ensemble predictors will stimulate research into host-pathogen relationships and inspiration for the development of new bioinformatics tools for predicting effector proteins of T3SS, T4SS and T6SS.


Asunto(s)
Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/genética , Genoma Bacteriano , Posición Específica de Matrices de Puntuación , Algoritmos , Secuencia de Aminoácidos , Aminoácidos/metabolismo , Bacterias/crecimiento & desarrollo , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Interacciones Huésped-Patógeno , Humanos , Programas Informáticos
19.
Emerg Infect Dis ; 23(11): 1872-1875, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29048298

RESUMEN

Klebsiella pneumoniae shows increasing emergence of multidrug-resistant lineages, including strains resistant to all available antimicrobial drugs. We conducted whole-genome sequencing of 178 highly drug-resistant isolates from a tertiary hospital in Lahore, Pakistan. Phylogenetic analyses to place these isolates into global context demonstrate the expansion of multiple independent lineages, including K. quasipneumoniae.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple/genética , Genoma Bacteriano/genética , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/genética , Adolescente , Antibacterianos/farmacología , Niño , Niño Hospitalizado , Preescolar , Humanos , Lactante , Recién Nacido , Infecciones por Klebsiella/epidemiología , Klebsiella pneumoniae/aislamiento & purificación , Pakistán/epidemiología , Filogenia , Análisis de Secuencia de ADN
20.
Front Microbiol ; 8: 1230, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28713357

RESUMEN

The rise in diversity of antimicrobial resistance phenotypes seen in Klebsiella pneumoniae is becoming a serious antibiotic management problem. We sought to investigate the molecular characteristics and clinical implications of extensively drug-resistant (XDR) K. pneumoniae isolated from different nosocomial bloodstream infections (BSIs) patients from July 2013 to November 2015. Even in combination treatment, meropenem did not protect against mortality of BSIs patients (P = 0.015). In contrast, tigecycline in combination with other antimicrobial agents significantly protected against mortality (P = 0.016). Antimicrobial susceptibility tests, molecular detection of antibiotic resistance determinants, conjugation experiments, multilocus sequence typing (MLST), S1-PFGE, Southern blot, SDS-PAGE, immunoblot analysis, and pulsed-field gel electrophoresis (PFGE) were used to characterize these isolates. These XDR K. pneumoniae strains were resistant to conventional antimicrobials except tigecycline and polymyxin B and co-harbored diverse resistance determinants. rmtB, blaKPC-2 as well as blaCTX-M-9 were located on a transferable plasmid of ~54.2 kb and the most predominant replicon type was IncF. 23 of the 35 isolates belonging the predominant clone were found to incorporate the globally-disseminated sequence type ST11, but others including a unique, previously undiscovered lineage ST2281 (allelic profile: 4-1-1-22-7-4-35) were also found and characterized. The porins OmpK35 and OmpK36 were deficient in two carbapenemase-negative carbapenem-resistant strains, suggesting decreased drug uptake as a mechanism for carbapenem resistance. This study highlights the importance of tracking hospital acquired infections, monitoring modes of antibiotic resistance to improve health outcomes of BSIs patients and to highlight the problems of XDR K. pneumoniae dissemination in healthcare settings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA