Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Genome Biol Evol ; 15(8)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37463407

RESUMEN

Agrobacteria are important plant pathogens responsible for crown/cane gall and hairy root diseases. Crown/cane gall disease is associated with strains carrying tumor-inducing (Ti) plasmids, while hairy root disease is caused by strains harboring root-inducing (Ri) plasmids. In this study, we analyzed the sequences of Ti plasmids of the novel "tumorigenes" clade of the family Rhizobiaceae ("tumorigenes" Ti plasmids), which includes two species, Rhizobium tumorigenes and Rhizobium rhododendri. The sequences of reference Ti/Ri plasmids were also included, which was followed by a comparative analysis of their backbone and accessory regions. The "tumorigenes" Ti plasmids have novel opine signatures compared with other Ti/Ri plasmids characterized so far. The first group exemplified by pTi1078 is associated with production of agrocinopine, nopaline, and ridéopine in plant tumors, while the second group comprising pTi6.2 is responsible for synthesis of leucinopine. Bioinformatic and chemical analyses, including opine utilization assays, indicated that leucinopine associated with pTi6.2 most likely has D,L stereochemistry, unlike the L,L-leucinopine produced in tumors induced by reference strains Chry5 and Bo542. Most of the "tumorigenes" Ti plasmids have conjugative transfer system genes that are unusual for Ti plasmids, composed of avhD4/avhB and traA/mobC/parA regions. Next, our results suggested that "tumorigenes" Ti plasmids have a common origin, but they diverged through large-scale recombination events, through recombination with single or multiple distinct Ti/Ri plasmids. Lastly, we showed that Ti/Ri plasmids could be differentiated based on pairwise Mash or average amino-acid identity distance clustering, and we supply a script to facilitate application of the former approach by other researchers.


Asunto(s)
Neoplasias , Rhizobium , Humanos , Plásmidos Inductores de Tumor en Plantas/genética , Titanio , Plásmidos/genética , Rhizobium/genética , Tumores de Planta/microbiología , ADN Bacteriano/genética
2.
Environ Microbiol ; 24(5): 2543-2575, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35415868

RESUMEN

Strain L21-Ace-BEST , isolated from a lithifying cyanobacterial mat, could be assigned to a novel species and genus within the class Deferribacteres. It is an important model organism for the study of anaerobic acetate degradation under hypersaline conditions. The metabolism of strain L21-Ace-BEST was characterized by biochemical studies, comparative genome analyses, and the evaluation of gene expression patterns. The central metabolic pathway is the citric acid cycle, which is mainly controlled by the enzyme succinyl-CoA:acetate-CoA transferase. The potential use of a reversed oxidative citric acid cycle to fix CO2 has been revealed through genome analysis. However, no autotrophic growth was detected in this strain, whereas sulfide and H2 can be used mixotrophically. Preferred electron acceptors for the anaerobic oxidation of acetate are nitrate, fumarate and dimethyl sulfoxide, while oxygen can be utilized only under microoxic conditions. Aerotolerant growth by fermentation was observed at higher oxygen concentrations. The redox cycling of sulfur/sulfide enables the generation of reducing power for the assimilation of acetate during growth and could prevent the over-reduction of cells in stationary phase. Extracellular electron transfer appears to be an essential component of the respiratory metabolism in this clade of Deferribacteres and may be involved in the reduction of nitrite to ammonium.


Asunto(s)
Metabolismo Energético , Azufre , Acetatos , Oxidación-Reducción , Oxígeno , Sulfuros , Azufre/metabolismo
3.
Environ Microbiol ; 24(3): 1499-1517, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35106888

RESUMEN

Infections by the pathogenic gut bacterium Clostridioides difficile cause severe diarrhoeas up to a toxic megacolon and are currently among the major causes of lethal bacterial infections. Successful bacterial propagation in the gut is strongly associated with the adaptation to changing nutrition-caused environmental conditions; e.g. environmental salt stresses. Concentrations of 350 mM NaCl, the prevailing salinity in the colon, led to significantly reduced growth of C. difficile. Metabolomics of salt-stressed bacteria revealed a major reduction of the central energy generation pathways, including the Stickland-fermentation reactions. No obvious synthesis of compatible solutes was observed up to 24 h of growth. The ensuing limited tolerance to high salinity and absence of compatible solute synthesis might result from an evolutionary adaptation to the exclusive life of C. difficile in the mammalian gut. Addition of the compatible solutes carnitine, glycine-betaine, γ-butyrobetaine, crotonobetaine, homobetaine, proline-betaine and dimethylsulfoniopropionate restored growth (choline and proline failed) under conditions of high salinity. A bioinformatically identified OpuF-type ABC-transporter imported most of the used compatible solutes. A long-term adaptation after 48 h included a shift of the Stickland fermentation-based energy metabolism from the utilization to the accumulation of l-proline and resulted in restored growth. Surprisingly, salt stress resulted in the formation of coccoid C. difficile cells instead of the typical rod-shaped cells, a process reverted by the addition of several compatible solutes. Hence, compatible solute import via OpuF is the major immediate adaptation strategy of C. difficile to high salinity-incurred cellular stress.


Asunto(s)
Clostridioides difficile , Salinidad , Adaptación Fisiológica , Betaína/metabolismo , Prolina/metabolismo
4.
Metabolites ; 11(2)2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33671140

RESUMEN

Genome-scale metabolic models are of high interest in a number of different research fields. Flux balance analysis (FBA) and other mathematical methods allow the prediction of the steady-state behavior of metabolic networks under different environmental conditions. However, many existing applications for flux optimizations do not provide a metabolite-centric view on fluxes. Metano is a standalone, open-source toolbox for the analysis and refinement of metabolic models. While flux distributions in metabolic networks are predominantly analyzed from a reaction-centric point of view, the Metano methods of split-ratio analysis and metabolite flux minimization also allow a metabolite-centric view on flux distributions. In addition, we present MMTB (Metano Modeling Toolbox), a web-based toolbox for metabolic modeling including a user-friendly interface to Metano methods. MMTB assists during bottom-up construction of metabolic models by integrating reaction and enzymatic annotation data from different databases. Furthermore, MMTB is especially designed for non-experienced users by providing an intuitive interface to the most commonly used modeling methods and offering novel visualizations. Additionally, MMTB allows users to upload their models, which can in turn be explored and analyzed by the community. We introduce MMTB by two use cases, involving a published model of Corynebacterium glutamicum and a newly created model of Phaeobacter inhibens.

5.
Mucosal Immunol ; 14(1): 113-124, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32433514

RESUMEN

Diverse microbial signatures within the intestinal microbiota have been associated with intestinal and systemic inflammatory diseases, but whether these candidate microbes actively modulate host phenotypes or passively expand within the altered microbial ecosystem is frequently not known. Here we demonstrate that colonization of mice with a member of the genus Prevotella, which has been previously associated to colitis in mice, exacerbates intestinal inflammation. Our analysis revealed that Prevotella intestinalis alters composition and function of the ecosystem resulting in a reduction of short-chain fatty acids, specifically acetate, and consequently a decrease in intestinal IL-18 levels during steady state. Supplementation of IL-18 to Prevotella-colonized mice was sufficient to reduce intestinal inflammation. Hence, we conclude that intestinal Prevotella colonization results in metabolic changes in the microbiota, which reduce IL-18 production and consequently exacerbate intestinal inflammation, and potential systemic autoimmunity.


Asunto(s)
Infecciones por Bacteroidaceae/inmunología , Infecciones por Bacteroidaceae/microbiología , Microbioma Gastrointestinal/inmunología , Interacciones Huésped-Patógeno/inmunología , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Prevotella/inmunología , Inmunidad Adaptativa , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Mediadores de Inflamación/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Metagenoma , Metagenómica/métodos , Ratones , Ratones Noqueados , Mucositis/etiología , Mucositis/metabolismo , Mucositis/patología
6.
Nat Commun ; 11(1): 5790, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-33188179

RESUMEN

The degradation of synthetic polymers by marine microorganisms is not as well understood as the degradation of plastics in soil and compost. Here, we use metagenomics, metatranscriptomics and metaproteomics to study the biodegradation of an aromatic-aliphatic copolyester blend by a marine microbial enrichment culture. The culture can use the plastic film as the sole carbon source, reaching maximum conversion to CO2 and biomass in around 15 days. The consortium degrades the polymer synergistically, with different degradation steps being performed by different community members. We identify six putative PETase-like enzymes and four putative MHETase-like enzymes, with the potential to degrade aliphatic-aromatic polymers and their degradation products, respectively. Our results show that, although there are multiple genes and organisms with the potential to perform each degradation step, only a few are active during biodegradation.


Asunto(s)
Organismos Acuáticos/metabolismo , Consorcios Microbianos , Plásticos/metabolismo , Poliésteres/metabolismo , Proteínas Bacterianas/metabolismo , Biodegradación Ambiental , Dióxido de Carbono/metabolismo , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Consorcios Microbianos/genética , Minerales/química , Modelos Biológicos , Biosíntesis de Proteínas/genética , Factores de Tiempo
7.
Genome Biol Evol ; 11(1): 270-294, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30590650

RESUMEN

Cyanobacteria are dominant primary producers of various ecosystems and they colonize marine as well as freshwater and terrestrial habitats. On the basis of their oxygenic photosynthesis they are known to synthesize a high number of secondary metabolites, which makes them promising for biotechnological applications. State-of-the-art sequencing and analytical techniques and the availability of several axenic strains offer new opportunities for the understanding of the hidden metabolic potential of cyanobacteria beyond those of single model organisms. Here, we report comprehensive genomic and metabolic analyses of five non-marine cyanobacteria, that is, Nostoc sp. DSM 107007, Anabaena variabilis DSM 107003, Calothrix desertica DSM 106972, Chroococcidiopsis cubana DSM 107010, Chlorogloeopsis sp. PCC 6912, and the reference strain Synechocystis sp. PCC 6803. Five strains that are prevalently belonging to the order Nostocales represent the phylogenetic depth of clade B1, a morphologically highly diverse sister lineage of clade B2 that includes strain PCC 6803. Genome sequencing, light and scanning electron microscopy revealed the characteristics and axenicity of the analyzed strains. Phylogenetic comparisons showed the limits of the 16S rRNA gene for the classification of cyanobacteria, but documented the applicability of a multilocus sequence alignment analysis based on 43 conserved protein markers. The analysis of metabolites of the core carbon metabolism showed parts of highly conserved metabolic pathways as well as lineage specific pathways such as the glyoxylate shunt, which was acquired by cyanobacteria at least twice via horizontal gene transfer. Major metabolic changes were observed when we compared alterations between day and night samples. Furthermore, our results showed metabolic potential of cyanobacteria beyond Synechocystis sp. PCC 6803 as model organism and may encourage the cyanobacterial community to broaden their research to related organisms with higher metabolic activity in the desired pathways.


Asunto(s)
Ritmo Circadiano , Cianobacterias/metabolismo , Filogenia , Cianobacterias/genética , Cianobacterias/ultraestructura , Genoma Bacteriano
8.
PLoS One ; 12(10): e0186395, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29059219

RESUMEN

For a detailed investigation of the degradation of lysine in Phaeobacter inhibens DSM 17395, stable isotope experiments with uniformly 13C labeled L-lysine were carried out with lysine adapted cells and the metabolites were analyzed using GC/MS and HPLC/MS. A non-targeted stable isotope analysis was used which compares labeled and not labeled samples to determine the Mass Isotopomer Distribution not only for known metabolites but for all labeled compounds in our GC/MS analysis. We show that P. inhibens uses at least two parallel pathways for the first degradation steps of lysine. Further investigations identified L-pipecolate as an L-lysine degradation intermediate in P. inhibens. The analysis of HPLC/MS data as well as the labeling data of tricarboxylic acid (TCA) cycle intermediates show that L-lysine is not only catabolized directly to acetyl-CoA but also via the ethylmalonyl-CoA-pathway, leading to entry points into the TCA cycle via acetyl-CoA, succinyl-CoA, and malate. Altogether the presented data give a detailed insight into the catabolization of L-lysine following the fate of 13C labeled carbon via several ways into the TCA cycle.


Asunto(s)
Lisina/metabolismo , Rhodobacteraceae/metabolismo , Cromatografía Líquida de Alta Presión , Ciclo del Ácido Cítrico , Cromatografía de Gases y Espectrometría de Masas , Isótopos/metabolismo
9.
PLoS One ; 12(5): e0177295, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28481933

RESUMEN

Phaeobacter inhibens DSM 17395, a model organism for marine Roseobacter group, was studied for its response to its own antimicrobial compound tropodithietic acid (TDA). TDA biosynthesis is encoded on the largest extrachromosomal element of P. inhibens, the 262 kb plasmid, whose curation leads to an increased growth and biomass yield. In this study, the plasmid-cured strain was compared to the wild-type strain and to transposon mutants lacking single genes of the TDA biosynthesis. The data show that the growth inhibition of the wild-type strain can be mainly attributed to the TDA produced by P. inhibens itself. Oxygen uptake rates remained constant in all strains but the growth rate dropped in the wild-type which supports the recently proposed mode of TDA action. Metabolome analysis showed no metabolic alterations that could be attributed directly to TDA. Taken together, the growth of P. inhibens is limited by its own antibacterial compound due to a partial destruction of the proton gradient which leads to a higher energetic demand. The universal presence of TDA biosynthesis in genome-sequenced isolates of the genus Phaeobacter shows that there must be a high benefit of TDA for P. inhibens in its ecological niche despite the drawback on its metabolism.


Asunto(s)
Antibacterianos/farmacología , Rhodobacteraceae/crecimiento & desarrollo , Tropolona/análogos & derivados , Antibacterianos/biosíntesis , Metaboloma , Mutación , Oxígeno/metabolismo , Rhodobacteraceae/efectos de los fármacos , Rhodobacteraceae/genética , Rhodobacteraceae/metabolismo , Tropolona/farmacología
10.
FEBS Open Bio ; 7(4): 602-615, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28396843

RESUMEN

Antibiotic-associated infections with Clostridioides difficile are a severe and often lethal risk for hospitalized patients, and can also affect populations without these classical risk factors. For a rational design of therapeutical concepts, a better knowledge of the metabolism of the pathogen is crucial. Metabolic modeling can provide a simulation of quantitative growth and usage of metabolic pathways, leading to a deeper understanding of the organism. Here, we present an elaborate genome-scale metabolic model of C. difficile 630Δerm. The model iHD992 includes experimentally determined product and substrate uptake rates and is able to simulate the energy metabolism and quantitative growth of C. difficile. Dynamic flux balance analysis was used for time-resolved simulations of the quantitative growth in two different media. The model predicts oxidative Stickland reactions and glucose degradation as main sources of energy, while the resulting reduction potential is mostly used for acetogenesis via the Wood-Ljungdahl pathway. Initial modeling experiments did not reproduce the observed growth behavior before the production of large quantities of a previously unknown polysaccharide was detected. Combined genome analysis and laboratory experiments indicated that the polysaccharide is an acetylated glucose polymer. Time-resolved simulations showed that polysaccharide secretion was coupled to growth even during unstable glucose uptake in minimal medium. This is accomplished by metabolic shifts between active glycolysis and gluconeogenesis which were also observed in laboratory experiments.

11.
Environ Microbiol ; 18(12): 4817-4829, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27233797

RESUMEN

Plasmid carriage is associated with energetic costs, and thus only those plasmids providing fitness benefits are stably maintained in the host lineage. Marine bacteria of the Roseobacter clade harbor up to 11 extrachromosomal replicons, adding lifestyle-relevant and possibly habitat success-promoting functions to their genomic repertoire. Phaeobacter inhibens DSM 17395 is a nutritionally versatile representative, carrying three stable and functionally distinct plasmids (65, 78, and 262 kb). The present study investigates the physiological and energetic consequences of plasmid carriage in P. inhibens DSM 17395, employing mutants cured from all native plasmids in every possible combination (seven different). Cultivation in process-controlled bioreactors with casamino acids as organic substrate revealed a complex physiological response, suggesting existence of functional interconnections between the replicons. Deletion of the 262 kb plasmid boosted growth rate (>3-fold) and growth efficiency (yields for carbon, O2 and CO2 ), which was not observed for the 65 or 78 kb plasmid. Carriage of the 262 kb plasmid was most costly for the wild type, i.e. contributing ∼50% to its energetic (dissimilatory) expenditures. Cost-benefit analysis of plasmid carriage reflects the high value of plasmids for niche specialization of P. inhibens DSM 17395 and most likely also for related Phaeobacter species.


Asunto(s)
Plásmidos , Rhodobacteraceae/genética , Aminoácidos/metabolismo , Metabolismo Energético , Replicón , Rhodobacteraceae/crecimiento & desarrollo , Roseobacter/genética
12.
BMC Microbiol ; 15: 281, 2015 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-26680234

RESUMEN

BACKGROUND: Clostridium difficile is one of the major nosocomial threats causing severe gastrointestinal infections. Compared to the well documented clinical symptoms, little is known about the processes in the bacterial cell like the regulation and activity of metabolic pathways. In this study, we present time-resolved and global data of extracellular substrates and products. In a second part, we focus on the correlation of fermentation products and substrate uptake with toxin production. RESULTS: Formation of different fermentation products during growth in a comparison between the two different media in a global approach was studied using non-targeted gas chromatography-mass spectrometry (GC-MS) based analysis. During cultivation in a casamino acids medium and minimal medium, the clinical isolate C. difficile 630Δerm showed major differences in amino acid utilization: In casamino acids medium, C. difficile preferred proline, leucine and cysteine as carbon and energy sources while glutamate and lysine were not or hardly used. In contrast, proline and leucine were consumed at a significantly later stage in minimal medium. Due to the more complex substrate mixture more fermentation products were detectable in the casamino acids medium, accompanied by major changes in the ratios between oxidative and reductive Stickland products. Different glucose consumption dynamics were observed in presence of either casamino acids or the minimal set of amino acids, accompanied by major changes in butanoate formation. This was associated with a variation in both the toxin yield and a change in the ratio of toxin A to toxin B. CONCLUSIONS: Since in all media compositions, more than one substrate was available as a suitable carbon source, availability of different carbon sources and their metabolic fate appears to be the key factor for toxin formation.


Asunto(s)
Aminoácidos/metabolismo , Toxinas Bacterianas/metabolismo , Clostridioides difficile/crecimiento & desarrollo , Enterotoxinas/metabolismo , Fermentación , Aminoácidos/farmacología , Proteínas Bacterianas/metabolismo , Clostridioides difficile/metabolismo , Medios de Cultivo/química , Cromatografía de Gases y Espectrometría de Masas , Glucosa/metabolismo , Metabolismo Secundario
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...