Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nature ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831053

RESUMEN

Ensembles of particles governed by quantum mechanical laws exhibit intriguing emergent behaviour. Atomic quantum gases1,2, liquid helium3,4 and electrons in quantum materials5-7 all exhibit distinct properties because of their composition and interactions. Quantum degenerate samples of ultracold dipolar molecules promise the realization of new phases of matter and new avenues for quantum simulation8 and quantum computation9. However, rapid losses10, even when reduced through collisional shielding techniques11-13, have so far prevented evaporative cooling to a Bose-Einstein condensate (BEC). Here we report on the realization of a BEC of dipolar molecules. By strongly suppressing two- and three-body losses via enhanced collisional shielding, we evaporatively cool sodium-caesium molecules to quantum degeneracy and cross the phase transition to a BEC. The BEC reveals itself by a bimodal distribution when the phase-space density exceeds 1. BECs with a condensate fraction of 60(10)% and a temperature of 6(2) nK are created and found to be stable with a lifetime close to 2 s. This work opens the door to the exploration of dipolar quantum matter in regimes that have been inaccessible so far, promising the creation of exotic dipolar droplets14, self-organized crystal phases15 and dipolar spin liquids in optical lattices16.

2.
Methods Mol Biol ; 2726: 235-254, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38780734

RESUMEN

Generating accurate alignments of non-coding RNA sequences is indispensable in the quest for understanding RNA function. Nevertheless, aligning RNAs remains a challenging computational task. In the twilight-zone of RNA sequences with low sequence similarity, sequence homologies and compatible, favorable (a priori unknown) structures can be inferred only in dependency of each other. Thus, simultaneous alignment and folding (SA&F) remains the gold-standard of comparative RNA analysis, even if this method is computationally highly demanding. This text introduces to the recent release 2.0 of the software package LocARNA, focusing on its practical application. The package enables versatile, fast and accurate analysis of multiple RNAs. For this purpose, it implements SA&F algorithms in a specific, lightweight flavor that makes them routinely applicable in large scale. Its high performance is achieved by combining ensemble-based sparsification of the structure space and banding strategies. Probabilistic banding strongly improves the performance of LocARNA 2.0 even over previous releases, while simplifying its effective use. Enabling flexible application to various use cases, LocARNA provides tools to globally and locally compare, cluster, and multiply aligned RNAs based on optimization and probabilistic variants of SA&F, which optionally integrate prior knowledge, expressible by anchor and structure constraints.


Asunto(s)
Algoritmos , Biología Computacional , Pliegue del ARN , ARN , Programas Informáticos , ARN/genética , ARN/química , Biología Computacional/métodos , Conformación de Ácido Nucleico , Alineación de Secuencia/métodos , Análisis de Secuencia de ARN/métodos
3.
Methods Mol Biol ; 2726: 285-313, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38780736

RESUMEN

Applications in biotechnology and bio-medical research call for effective strategies to design novel RNAs with very specific properties. Such advanced design tasks require support by computational tools but at the same time put high demands on their flexibility and expressivity to model the application-specific requirements. To address such demands, we present the computational framework Infrared. It supports developing advanced customized design tools, which generate RNA sequences with specific properties, often in a few lines of Python code. This text guides the reader in tutorial format through the development of complex design applications. Thanks to the declarative, compositional approach of Infrared, we can describe this development as a step-by-step extension of an elementary design task. Thus, we start with generating sequences that are compatible with a single RNA structure and go all the way to RNA design targeting complex positive and negative design objectives with respect to single or even multiple target structures. Finally, we present a "real-world" application of computational design to create an RNA device for biotechnology: we use Infrared to generate design candidates of an artificial "AND" riboswitch, which activates gene expression in the simultaneous presence of two different small metabolites. In these applications, we exploit that the system can generate, in an efficient (fixed-parameter tractable) way, multiple diverse designs that satisfy a number of constraints and have high quality w.r.t. to an objective (by sampling from a Boltzmann distribution).


Asunto(s)
Biología Computacional , Conformación de Ácido Nucleico , ARN , Programas Informáticos , ARN/genética , ARN/química , Biología Computacional/métodos , Riboswitch/genética , Biotecnología/métodos
4.
Algorithms Mol Biol ; 19(1): 13, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38493130

RESUMEN

MOTIVATION: Many bioinformatics problems can be approached as optimization or controlled sampling tasks, and solved exactly and efficiently using Dynamic Programming (DP). However, such exact methods are typically tailored towards specific settings, complex to develop, and hard to implement and adapt to problem variations. METHODS: We introduce the Infrared framework to overcome such hindrances for a large class of problems. Its underlying paradigm is tailored toward problems that can be declaratively formalized as sparse feature networks, a generalization of constraint networks. Classic Boolean constraints specify a search space, consisting of putative solutions whose evaluation is performed through a combination of features. Problems are then solved using generic cluster tree elimination algorithms over a tree decomposition of the feature network. Their overall complexities are linear on the number of variables, and only exponential in the treewidth of the feature network. For sparse feature networks, associated with low to moderate treewidths, these algorithms allow to find optimal solutions, or generate controlled samples, with practical empirical efficiency. RESULTS: Implementing these methods, the Infrared software allows Python programmers to rapidly develop exact optimization and sampling applications based on a tree decomposition-based efficient processing. Instead of directly coding specialized algorithms, problems are declaratively modeled as sets of variables over finite domains, whose dependencies are captured by constraints and functions. Such models are then automatically solved by generic DP algorithms. To illustrate the applicability of Infrared in bioinformatics and guide new users, we model and discuss variants of bioinformatics applications. We provide reimplementations and extensions of methods for RNA design, RNA sequence-structure alignment, parsimony-driven inference of ancestral traits in phylogenetic trees/networks, and design of coding sequences. Moreover, we demonstrate multidimensional Boltzmann sampling. These applications of the framework-together with our novel results-underline the practical relevance of Infrared. Remarkably, the achieved complexities are typically equivalent to the ones of specialized algorithms and implementations. AVAILABILITY: Infrared is available at https://amibio.gitlabpages.inria.fr/Infrared with extensive documentation, including various usage examples and API reference; it can be installed using Conda or from source.

5.
Algorithms Mol Biol ; 19(1): 9, 2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38433200

RESUMEN

MOTIVATION: Computational RNA secondary structure prediction by free energy minimization is indispensable for analyzing structural RNAs and their interactions. These methods find the structure with the minimum free energy (MFE) among exponentially many possible structures and have a restrictive time and space complexity ( O ( n 3 ) time and O ( n 2 ) space for pseudoknot-free structures) for longer RNA sequences. Furthermore, accurate free energy calculations, including dangle contributions can be difficult and costly to implement, particularly when optimizing for time and space requirements. RESULTS: Here we introduce a fast and efficient sparsified MFE pseudoknot-free structure prediction algorithm, SparseRNAFolD, that utilizes an accurate energy model that accounts for dangle contributions. While the sparsification technique was previously employed to improve the time and space complexity of a pseudoknot-free structure prediction method with a realistic energy model, SparseMFEFold, it was not extended to include dangle contributions due to the complexity of computation. This may come at the cost of prediction accuracy. In this work, we compare three different sparsified implementations for dangle contributions and provide pros and cons of each method. As well, we compare our algorithm to LinearFold, a linear time and space algorithm, where we find that in practice, SparseRNAFolD has lower memory consumption across all lengths of sequence and a faster time for lengths up to 1000 bases. CONCLUSION: Our SparseRNAFolD algorithm is an MFE-based algorithm that guarantees optimality of result and employs the most general energy model, including dangle contributions. We provide a basis for applying dangles to sparsified recursion in a pseudoknot-free model that has the potential to be extended to pseudoknots.

6.
RNA ; 30(2): 113-123, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38071473

RESUMEN

The structure of an RNA, and even more so its interactions with other RNAs, provide valuable information about its function. Secondary structure-based tools for RNA-RNA interaction predictions provide a quick way to identify possible interaction targets and structures. However, these tools ignore the effect of steric hindrance on the tertiary (3D) structure level, and do not consider whether a suitable folding pathway exists to form the interaction. As a consequence, these tools often predict interactions that are unrealistically long and could be formed (in three dimensions) only by going through highly entangled intermediates. Here, we present a computational pipeline to assess whether a proposed secondary (2D) structure interaction is sterically feasible and reachable along a plausible folding pathway. To this end, we simulate the folding of a series of 3D structures along a given 2D folding path. To avoid the complexity of large-scale atomic resolution simulations, our pipeline uses coarse-grained 3D modeling and breaks up the folding path into small steps, each corresponding to the extension of the interaction by 1 or 2 bp. We apply our pipeline to analyze RNA-RNA interaction formation for three selected RNA-RNA complexes. We find that kissing hairpins, in contrast to interactions in the exterior loop, are difficult to extend and tend to get stuck at an interaction length of 6 bp. Our tool, including source code, documentation, and sample data, is available at www.github.com/irenekb/RRI-3D.


Asunto(s)
Pliegue del ARN , ARN , ARN/química , Conformación de Ácido Nucleico , Estudios de Factibilidad , Programas Informáticos
7.
Algorithms Mol Biol ; 18(1): 18, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38041153

RESUMEN

Although RNA secondary structure prediction is a textbook application of dynamic programming (DP) and routine task in RNA structure analysis, it remains challenging whenever pseudoknots come into play. Since the prediction of pseudoknotted structures by minimizing (realistically modelled) energy is NP-hard, specialized algorithms have been proposed for restricted conformation classes that capture the most frequently observed configurations. To achieve good performance, these methods rely on specific and carefully hand-crafted DP schemes. In contrast, we generalize and fully automatize the design of DP pseudoknot prediction algorithms. For this purpose, we formalize the problem of designing DP algorithms for an (infinite) class of conformations, modeled by (a finite number of) fatgraphs, and automatically build DP schemes minimizing their algorithmic complexity. We propose an algorithm for the problem, based on the tree-decomposition of a well-chosen representative structure, which we simplify and reinterpret as a DP scheme. The algorithm is fixed-parameter tractable for the treewidth tw of the fatgraph, and its output represents a [Formula: see text] algorithm (and even possibly [Formula: see text] in simple energy models) for predicting the MFE folding of an RNA of length n. We demonstrate, for the most common pseudoknot classes, that our automatically generated algorithms achieve the same complexities as reported in the literature for hand-crafted schemes. Our framework supports general energy models, partition function computations, recursive substructures and partial folding, and could pave the way for algebraic dynamic programming beyond the context-free case.

8.
Rev Sci Instrum ; 94(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38099836

RESUMEN

We report on the design and characterization of a compact microwave antenna for atomic and molecular physics experiments. The antenna is comprised of four loop antennas arranged in a cloverleaf shape, allowing for precise adjustment of polarization by tuning the relative phase of the loops. We optimize the antenna for left-circularly polarized microwaves at 3.5 GHz and characterize its near-field performance using ultracold NaCs molecules as a precise quantum sensor. Observing an unusually high Rabi frequency of 2π × 46.1(2) MHz, we extract an electric field amplitude of 33(2) V/cm at 22 mm distance from the antenna. The polarization ellipticity is 2.3(4)°, corresponding to a 24 dB suppression of right-circular polarization. The cloverleaf antenna is planar and provides large optical access, making it highly suitable for quantum control of atoms and molecules and potentially other quantum systems that operate in the microwave regime.

9.
J Phys Chem A ; 127(39): 8194-8199, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37738380

RESUMEN

We report on a cycling scheme for Doppler cooling of trapped OH+ ions using transitions between the electronic ground state X3Σ- and the first excited triplet state A3Π. We have identified relevant transitions for photon cycling and repumping, have found that coupling into other electronic states is strongly suppressed, and have calculated the number of photon scatterings required to cool OH+ to a temperature where Raman sideband cooling can take over. In contrast to the standard approach, where molecular ions are sympathetically cooled, our scheme does not require co-trapping of another species and opens the door to the creation of pure samples of cold molecular ions with potential applications in quantum information, quantum chemistry, and astrochemistry. The laser cooling scheme identified for OH+ is efficient despite the absence of near-diagonal Franck-Condon factors, suggesting that broader classes of molecules and molecular ions are amenable to laser cooling than commonly assumed.

10.
Phys Rev Lett ; 130(11): 113002, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-37001095

RESUMEN

We report on the creation of bosonic NaCs molecules in their absolute rovibrational ground state via stimulated Raman adiabatic passage. We create ultracold gases with up to 22 000 dipolar NaCs molecules at a temperature of 300(50) nK and a peak density of 1.0(4)×10^{12} cm^{-3}. We demonstrate comprehensive quantum state control by preparing the molecules in a specific electronic, vibrational, rotational, and hyperfine state. We measure the ground state ac polarizability at 1064 nm along with the two-body loss rate, which we find to be universal. Employing the tunability and strength of the permanent electric dipole moment of NaCs, we induce dipole moments of up to 2.6 D at a dc electric field of 2.1(2) kV/cm and demonstrate strong microwave coupling between the two lowest rotational states with a Rabi frequency of 2π×45 MHz. A large electric dipole moment, accessible at relatively small electric fields, makes ultracold gases of NaCs molecules well suited for the exploration of strongly interacting phases of dipolar quantum matter.

11.
Rev Sci Instrum ; 94(1): 013202, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36725573

RESUMEN

We report on the design and characterization of a cold atom source for strontium (Sr) based on a two-dimensional magneto-optical trap (MOT) that is directly loaded from the atom jet of a dispenser. We characterize the atom flux of the source by measuring the loading rate of a three-dimensional MOT. We find loading rates of up to 108 atoms per second. The setup is compact, easy to construct, and has low power consumption. It addresses the longstanding challenge of reducing the complexity of cold beam sources for Sr, which is relevant for optical atomic clocks, quantum simulation, and computing devices based on ultracold Sr.

12.
Nature ; 614(7946): 35-36, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36725989
13.
Algorithms Mol Biol ; 17(1): 10, 2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35578255

RESUMEN

BACKGROUND: Commonly, sequence and structure elements are assumed to evolve congruently, such that homologous sequence positions correspond to homologous structural features. Assuming congruent evolution, alignments based on sequence and structure similarity can therefore optimize both similarities at the same time in a single alignment. To model incongruent evolution, where sequence and structural features diverge positionally, we recently introduced bi-alignments. This generalization of sequence and structure-based alignments is best understood as alignments of two distinct pairwise alignments of the same entities: one modeling sequence similarity, the other structural similarity. RESULTS: Optimal bi-alignments with affine gap costs (or affine shift cost) for two constituent alignments can be computed exactly in quartic space and time. Even bi-alignments with affine shift and gap cost, as well as bi-alignment with sub-additive gap cost are optimized efficiently. Affine gap-cost bi-alignment of large proteins ([Formula: see text] aa) can be computed. CONCLUSION: Affine cost bi-alignments are of practical interest to study shifts of protein sequences and protein structures relative to each other. AVAILABILITY: The affine cost bi-alignment algorithm has been implemented in Python 3 and Cython. It is available as free software from https://github.com/s-will/BiAlign/releases/tag/v0.3 and as bioconda package bialign.

14.
Noncoding RNA ; 7(4)2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34842779

RESUMEN

As more sequencing data accumulate and novel puzzling genetic regulations are discovered, the need for accurate automated modeling of RNA structure increases. RNA structure modeling from chemical probing experiments has made tremendous progress, however accurately predicting large RNA structures is still challenging for several reasons: RNA are inherently flexible and often adopt many energetically similar structures, which are not reliably distinguished by the available, incomplete thermodynamic model. Moreover, computationally, the problem is aggravated by the relevance of pseudoknots and non-canonical base pairs, which are hardly predicted efficiently. To identify nucleotides involved in pseudoknots and non-canonical interactions, we scrutinized the SHAPE reactivity of each nucleotide of the 188 nt long lariat-capping ribozyme under multiple conditions. Reactivities analyzed in the light of the X-ray structure were shown to report accurately the nucleotide status. Those that seemed paradoxical were rationalized by the nucleotide behavior along molecular dynamic simulations. We show that valuable information on intricate interactions can be deduced from probing with different reagents, and in the presence or absence of Mg2+. Furthermore, probing at increasing temperature was remarkably efficient at pointing to non-canonical interactions and pseudoknot pairings. The possibilities of following such strategies to inform structure modeling software are discussed.

15.
Methods Mol Biol ; 2284: 1-15, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33835434

RESUMEN

RNA design addresses the need to build novel RNAs, e.g., for biotechnological applications in synthetic biology, equipped with desired functional properties. This chapter describes how to use the software RNARedPrint for the de novo rational design of RNA sequences adopting one or several desired secondary structures. Depending on the application, these structures could represent alternate configurations or kinetic pathways. The software makes such design convenient and sufficiently fast for practical routine, where it even overcomes notorious problems in the application of RNA design, e.g., it maintains realistic GC content.


Asunto(s)
ARN/síntesis química , Programas Informáticos , Biología Sintética/métodos , Algoritmos , Animales , Composición de Base , Secuencia de Bases , Humanos , Conformación de Ácido Nucleico , ARN/química , Riboswitch/fisiología , Interfaz Usuario-Computador
16.
Mol Cell ; 81(10): 2135-2147.e5, 2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-33713597

RESUMEN

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently a global pandemic. CoVs are known to generate negative subgenomes (subgenomic RNAs [sgRNAs]) through transcription-regulating sequence (TRS)-dependent template switching, but the global dynamic landscapes of coronaviral subgenomes and regulatory rules remain unclear. Here, using next-generation sequencing (NGS) short-read and Nanopore long-read poly(A) RNA sequencing in two cell types at multiple time points after infection with SARS-CoV-2, we identified hundreds of template switches and constructed the dynamic landscapes of SARS-CoV-2 subgenomes. Interestingly, template switching could occur in a bidirectional manner, with diverse SARS-CoV-2 subgenomes generated from successive template-switching events. The majority of template switches result from RNA-RNA interactions, including seed and compensatory modes, with terminal pairing status as a key determinant. Two TRS-independent template switch modes are also responsible for subgenome biogenesis. Our findings reveal the subgenome landscape of SARS-CoV-2 and its regulatory features, providing a molecular basis for understanding subgenome biogenesis and developing novel anti-viral strategies.


Asunto(s)
COVID-19 , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento , ARN Viral , SARS-CoV-2 , Animales , COVID-19/genética , COVID-19/metabolismo , Células CACO-2 , Chlorocebus aethiops , Humanos , ARN Viral/genética , ARN Viral/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Células Vero
17.
Appl Ergon ; 90: 103231, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32882503

RESUMEN

Powered two-wheelers are a common means of transport all over the world. In several countries, primary motorcycles with high displacement involve another purpose, namely motorcycling is a leisure activity. Motorcycles are used as tools of transport pleasure as opposed to being purely used for individual commuting purposes. The aim of the current study involves investigating the relation between experienced riding pleasure and riding behavior in a field test. Specifically, N = 12 motorcyclists between 21 and 66 years of age were observed while riding for approximately 8 h on public roads. The measurement setup included a logger for vehicle dynamics and vehicle handling data, GNSS data, video data, and subjective measures recorded as audio comments at predefined points of interest along the round course. A comprehensive dataset with more than 6000 km of motorcycling was gathered. The results indicate that parameters of lateral vehicle behavior, such as the maximum lean angle, reflected riding pleasure. Interestingly, this is applicable for curvy sections as well as straight roads. High ratings of riding pleasure correlated with riding in snaky lines as a type of self-stimulation on straight sections. Longitudinal vehicle dynamics, such as the range of accelerations, tend to increase with the riding pleasure in curves. Hence, the effects are smaller than those for lateral vehicle behavior and not visible on straight sections. Generally, curvy sections on rural roads produce higher pleasure than straight roads. On a global level, riding pleasure increases during the first few hours of riding and subsequently decreases with respect to the time on task. The results are discussed in the context of studies on driving pleasure from the automotive sector and more fundamental psychological theories that explain pleasure as a physiological stimulation or flow. Several individuals ride motorcycles to experience pleasure. A better understanding of rider behavior in these situations can aid in deriving proper assistance and to provide individual support to a rider, thereby increasing riding pleasure as well as safety.


Asunto(s)
Conducción de Automóvil , Motocicletas , Aceleración , Accidentes de Tránsito , Humanos , Placer
18.
Algorithms Mol Biol ; 15(1): 19, 2020 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-33292340

RESUMEN

MOTIVATION: Simultaneous alignment and folding (SA&F) of RNAs is the indispensable gold standard for inferring the structure of non-coding RNAs and their general analysis. The original algorithm, proposed by Sankoff, solves the theoretical problem exactly with a complexity of [Formula: see text] in the full energy model. Over the last two decades, several variants and improvements of the Sankoff algorithm have been proposed to reduce its extreme complexity by proposing simplified energy models or imposing restrictions on the predicted alignments. RESULTS: Here, we introduce a novel variant of Sankoff's algorithm that reconciles the simplifications of PMcomp, namely moving from the full energy model to a simpler base pair-based model, with the accuracy of the loop-based full energy model. Instead of estimating pseudo-energies from unconditional base pair probabilities, our model calculates energies from conditional base pair probabilities that allow to accurately capture structure probabilities, which obey a conditional dependency. This model gives rise to the fast and highly accurate novel algorithm Pankov (Probabilistic Sankoff-like simultaneous alignment and folding of RNAs inspired by Markov chains). CONCLUSIONS: Pankov benefits from the speed-up of excluding unreliable base-pairing without compromising the loop-based free energy model of the Sankoff's algorithm. We show that Pankov outperforms its predecessors LocARNA and SPARSE in folding quality and is faster than LocARNA.

19.
Phys Rev Lett ; 125(6): 063401, 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32845680

RESUMEN

We demonstrate microwave dressing on ultracold, fermionic ^{23}Na^{40}K ground-state molecules and observe resonant dipolar collisions with cross sections exceeding 3 times the s-wave unitarity limit. The origin of these interactions is the resonant alignment of the approaching molecules' dipoles along the intermolecular axis, which leads to strong attraction. We explain our observations with a conceptually simple two-state picture based on the Condon approximation. Furthermore, we perform coupled-channel calculations that agree well with the experimentally observed collision rates. The resonant microwave-induced collisions found here enable controlled, strong interactions between molecules, of immediate use for experiments in optical lattices.

20.
Bioinformatics ; 36(Suppl_1): i242-i250, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32657398

RESUMEN

MOTIVATION: Elucidating the functions of non-coding RNAs by homology has been strongly limited due to fundamental computational and modeling issues. While existing simultaneous alignment and folding (SA&F) algorithms successfully align homologous RNAs with precisely known boundaries (global SA&F), the more pressing problem of identifying new classes of homologous RNAs in the genome (local SA&F) is intrinsically more difficult and much less understood. Typically, the length of local alignments is strongly overestimated and alignment boundaries are dramatically mispredicted. We hypothesize that local SA&F approaches are compromised this way due to a score bias, which is caused by the contribution of RNA structure similarity to their overall alignment score. RESULTS: In the light of this hypothesis, we study pairwise local SA&F for the first time systematically-based on a novel local RNA alignment benchmark set and quality measure. First, we vary the relative influence of structure similarity compared to sequence similarity. Putting more emphasis on the structure component leads to overestimating the length of local alignments. This clearly shows the bias of current scores and strongly hints at the structure component as its origin. Second, we study the interplay of several important scoring parameters by learning parameters for local and global SA&F. The divergence of these optimized parameter sets underlines the fundamental obstacles for local SA&F. Third, by introducing a position-wise correction term in local SA&F, we constructively solve its principal issues. AVAILABILITY AND IMPLEMENTATION: The benchmark data, detailed results and scripts are available at https://github.com/BackofenLab/local_alignment. The RNA alignment tool LocARNA, including the modifications proposed in this work, is available at https://github.com/s-will/LocARNA/releases/tag/v2.0.0RC6. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Algoritmos , ARN , Genoma , ARN/genética , Alineación de Secuencia , Análisis de Secuencia de ARN , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA