RESUMEN
Exposure to ionizing radiation for oncological therapy increases the risk for late-onset fractures in survivors. However, the effects of total body irradiation (TBI) on adult bone are not well-characterized. The primary aim of this study was to quantify the long-term effects of TBI on bone microstructure, material composition, and mechanical behavior in skeletally mature rhesus macaque (Macaca mulatta) non-human primates. Femora were obtained post-mortem from animals exposed to an acute dose of TBI (6.0-6.75 Gy) nearly a decade earlier, age-matched non-irradiated controls, and non-irradiated young animals. The microstructure of femoral trabecular and cortical bone was assessed via micro-computed tomography. Material composition was evaluated by measuring total fluorescent advanced glycation end products (fAGEs). Cortical bone mechanical behavior was quantified via four-point bending and cyclic reference point indentation (cRPI). Animals exposed to TBI had slightly worse cortical microstructure, including lower cortical thickness (-11%, p = 0.037) and cortical area (-24%, p = 0.049), but similar fAGE content and mechanical properties as age-matched controls. Aging did not influence cortical microstructure, fAGE content, or cRPI measures but diminished femoral cortical post-yield properties, including toughness to fracture (-32%, p = 0.032). Because TBI was administered after the acquisition of peak bone mass, these results suggest that the skeletons of long-term survivors of adulthood TBI may be resilient, retaining or recovering their mechanical integrity during the post-treatment period, despite radiation-induced architectural deficits. Further investigation is necessary to better understand radiation-induced skeletal fragility in mature and immature bone to improve care for radiation patients of all ages.
Asunto(s)
Fémur , Macaca mulatta , Irradiación Corporal Total , Animales , Irradiación Corporal Total/efectos adversos , Masculino , Fémur/efectos de la radiación , Fémur/diagnóstico por imagen , Fémur/patología , Microtomografía por Rayos X , Fenómenos Biomecánicos , Hueso Cortical/efectos de la radiación , Hueso Cortical/diagnóstico por imagen , Hueso Cortical/patología , Densidad Ósea/efectos de la radiaciónRESUMEN
Stereotactic Body Radiation Therapy for lung tumors near the chest wall often causes significant chest wall pain (CWP), negatively impacting patients' quality of life. The mechanisms behind SBRT-induced CWP remain unclear and may involve multiple factors. We investigated the potential crosstalk between radiation-activated osteoclasts and sensory neurons, focusing on osteoclast-derived factors in CWP. Using the murine pre-osteoclast cell line Raw264.7, we induced differentiation with RANKL, followed by 10Gy gamma-irradiation. Conditioned media from these irradiated osteoclasts was used to treat sensory neuronal cultures from mouse dorsal root ganglia. Neuronal cultures were also directly exposed to 10Gy radiation, with and without osteoclast co-culture. Analysis of osteoclast markers and pain-associated neuropeptides was conducted using RT-qPCR and histochemical staining. Osteoclast differentiation and activity were inhibited using Osteoprotegerin and risedronate. Results showed that high-dose radiation significantly increased osteoclast size, resorption pit size, and activity biomarkers. Neurons treated with CM from irradiated osteoclasts showed increased expression of pain-associated neuropeptides CGRP and Substance P, which was mitigated by osteoprotegerin and risedronate. This study suggests that high-dose radiation enhances osteoclast activity, upregulating pain-associated neuropeptides in sensory neurons, and that inhibitors like osteoprotegerin and risedronate may offer therapeutic strategies for managing radiation-induced pain.
RESUMEN
Osteoarthritis (OA) is increasing worldwide, and previous work found that OA increases systemic cartilage oligomeric matrix protein (COMP), which has also been implicated in prostate cancer (PCa). As such, we sought to investigate whether OA augments PCa progression. Cellular proliferation and migration of RM1 murine PCa cells treated with interleukin (IL)-1α, COMP, IL-1α + COMP, or conditioned media from cartilage explants treated with IL-1α (representing OA media) and with inhibitors of COMP were assessed. A validated murine model was used for tumor growth and marker expression analysis. Both proliferation and migration were greater in PCa cells treated with OA media compared to controls (p < 0.001), which was not seen with direct application of the stimulants. Migration and proliferation were not negatively affected when OA media was mixed with downstream and COMP inhibitors compared to controls (p > 0.05 for all). Mice with OA developed tumors 100% of the time, whereas mice without OA only 83.4% (p = 0.478). Tumor weight correlated with OA severity (Pearson correlation = 0.813, p = 0.002). Moreover, tumors from mice with OA demonstrated increased Ki-67 expression compared to controls (mean 24.56% vs. 6.91%, p = 0.004) but no difference in CD31, PSMA, or COMP expression (p > 0.05). OA appears to promote prostate cancer in vitro and in vivo.
Asunto(s)
Proteína de la Matriz Oligomérica del Cartílago , Proliferación Celular , Osteoartritis , Neoplasias de la Próstata , Masculino , Animales , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Ratones , Proteína de la Matriz Oligomérica del Cartílago/metabolismo , Proteína de la Matriz Oligomérica del Cartílago/genética , Línea Celular Tumoral , Osteoartritis/metabolismo , Osteoartritis/patología , Osteoartritis/etiología , Movimiento Celular/efectos de los fármacos , Humanos , Modelos Animales de Enfermedad , Interleucina-1alfa/metabolismoRESUMEN
There has been growing interest within the space industry for long-duration manned expeditions to the Moon and Mars. During deep space missions, astronauts are exposed to high levels of galactic cosmic radiation (GCR) and microgravity which are associated with increased risk of oxidative stress and endothelial dysfunction. Oxidative stress and endothelial dysfunction are causative factors in the pathogenesis of erectile dysfunction, although the effects of spaceflight on erectile function have been unexplored. Therefore, the purpose of this study was to investigate the effects of simulated spaceflight and long-term recovery on tissues critical for erectile function, the distal internal pudendal artery (dIPA), and the corpus cavernosum (CC). Eighty-six adult male Fisher-344 rats were randomized into six groups and exposed to 4-weeks of hindlimb unloading (HLU) or weight-bearing control, and sham (0Gy), 0.75 Gy, or 1.5 Gy of simulated GCR at the ground-based GCR simulator at the NASA Space Radiation Laboratory. Following a 12-13-month recovery, ex vivo physiological analysis of the dIPA and CC tissue segments revealed differential impacts of HLU and GCR on endothelium-dependent and -independent relaxation that was tissue type specific. GCR impaired non-adrenergic non-cholinergic (NANC) nerve-mediated relaxation in the dIPA and CC, while follow-up experiments of the CC showed restoration of NANC-mediated relaxation of GCR tissues following acute incubation with the antioxidants mito-TEMPO and TEMPOL, as well as inhibitors of xanthine oxidase and arginase. These findings indicate that simulated spaceflight exerts a long-term impairment of neurovascular erectile function, which exposes a new health risk to consider with deep space exploration.
Asunto(s)
Disfunción Eréctil , Vuelo Espacial , Ingravidez , Humanos , Ratas , Masculino , Animales , Ingravidez/efectos adversos , Disfunción Eréctil/etiología , Suspensión TraseraRESUMEN
Pathways leading to osteoarthritis (OA) are diverse depending on the risk factors involved; thus, developing OA therapeutics has been challenging. Here we report that nuclear protein-1 (Nupr1), a stress-inducible protein/transcription factor, is activated by pathways associated with obesity and aging in chondrocytes. Treatment of human chondrocytes with free fatty acids (palmitate and oleate; a model for high-fat diet/obesity) induced PERK signaling and increased expression of caspase-3, TRB3, and Nupr1. On the other hand, treatment of chondrocytes with menadione (oxidative stress inducer) induced oxidation of IRE1, activated antioxidant response (higher Nrf2 expression), and increased expression of Nupr1 and matrix metalloproteinases. Experimental OA was induced by destabilization of the medial meniscus (DMM) in the knee joints of Nupr1+/+ and Nupr1-/- mice. Loss of Nupr1 expression reduced the severity of cartilage lesions in this model. Together, our findings suggest that Nupr1 is a common factor activated by signaling pathways activated by obesity (ER stress) and age (oxidative stress) and a potential drug target for OA resulting from various risk factors.
Asunto(s)
Cartílago Articular , Osteoartritis , Animales , Humanos , Ratones , Envejecimiento , Cartílago Articular/metabolismo , Condrocitos/metabolismo , Proteínas Nucleares/metabolismo , Obesidad/metabolismo , Osteoartritis/metabolismoRESUMEN
Purpose: Brain metastases (BMs) are a common source of morbidity and mortality. Guidelines do not advise brain surveillance for locally advanced non-small cell lung cancer (LA-NSCLC). We describe the incidence, time to development, presentation, and management of BMs after definitive chemoradiotherapy (CRT). Methods and Materials: We reviewed records of patients with LA-NSCLC treated with CRT within the period from 2013 to 2020. Descriptive statistics were used to characterize the population and the Kaplan-Meier method was used to estimate time to BM. Fisher exact tests and Wilcoxon rank-sum tests were used to compare outcomes between symptomatic and asymptomatic patients. Results: A total of 219 patients were reviewed including 96 with squamous cell carcinoma, 88 with adenocarcinoma, and 35 with large cell/not otherwise specified (LC/NOS). Thirty-nine patients (17.8%) developed BMs: 35 (90%) symptomatic and 4 (10%) asymptomatic. The rate of BM was highest in LC/NOS (34.3%) and adenocarcinoma (23.9%). Ninety percent of BMs occurred within 2 years. All asymptomatic patients underwent stereotactic radiosurgery alone, compared with 40% of symptomatic patients (P = .04). Symptomatic patients were more likely to require hospitalization (65.7% vs 0%, P = .02), craniotomy (25.7% vs 0%, not significant), and steroids (91.4% vs 0%, P < .001). Cumulative BM volume was higher for symptomatic patients (4 vs 0.24 cm3, P < .001) as was median greatest axial dimension (2.18 vs 0.52 cm, P < .001). Conclusions: We identified a high rate of BMs, particularly in LC/NOS and adenocarcinoma histology NSCLC. The majority were symptomatic. These results provide rationale for post-CRT magnetic resonance imaging brain surveillance for patients at high risk of BM.
RESUMEN
Introduction: The space environment astronauts experience during space missions consists of multiple environmental challenges, including microgravity. In this study, we assessed the behavioral and cognitive performances of male Fisher rats 2 months after sham irradiation or total body irradiation with photons in the absence or presence of simulated microgravity. We analyzed the plasma collected 9 months after sham irradiation or total body irradiation for distinct alterations in metabolic pathways and to determine whether changes to metabolic measures were associated with specific behavioral and cognitive measures. Methods: A total of 344 male Fischer rats were irradiated with photons (6 MeV; 3, 8, or 10 Gy) in the absence or presence of simulated weightlessness achieved using hindlimb unloading (HU). To identify potential plasma biomarkers of photon radiation exposure or the HU condition for behavioral or cognitive performance, we performed regression analyses. Results: The behavioral effects of HU on activity levels in an open field, measures of anxiety in an elevated plus maze, and anhedonia in the M&M consumption test were more pronounced than those of photon irradiation. Phenylalanine, tyrosine, and tryptophan metabolism, and phenylalanine metabolism and biosynthesis showed very strong pathway changes, following photon irradiation and HU in animals irradiated with 3 Gy. Here, 29 out of 101 plasma metabolites were associated with 1 out of 13 behavioral measures. In the absence of HU, 22 metabolites were related to behavioral and cognitive measures. In HU animals that were sham-irradiated or irradiated with 8 Gy, one metabolite was related to behavioral and cognitive measures. In HU animals irradiated with 3 Gy, six metabolites were related to behavioral and cognitive measures. Discussion: These data suggest that it will be possible to develop stable plasma biomarkers of behavioral and cognitive performance, following environmental challenges like HU and radiation exposure.
RESUMEN
It has been proposed that neuroinflammatory response plays an important role in the neurovascular remodeling in the brain after stress. The goal of the present study was to characterize changes in the gene expression profiles associated with neuroinflammation, neuronal function, metabolism and stress in mouse brain tissue. Ten-week old male C57BL/6 mice were launched to the International Space Station (ISS) on SpaceX-12 for a 35-day mission. Within 38 ± 4 h of splashdown, mice were returned to Earth alive. Brain tissues were collected for analysis. A novel digital color-coded barcode counting technology (NanoStringTM) was used to evaluate gene expression profiles in the spaceflight mouse brain. A set of 54 differently expressed genes (p < 0.05) significantly segregates the habitat ground control (GC) group from flight (FLT) group. Many pathways associated with cellular stress, inflammation, apoptosis, and metabolism were significantly altered by flight conditions. A decrease in the expression of genes important for oligodendrocyte differentiation and myelin sheath maintenance was observed. Moreover, mRNA expression of many genes related to anti-viral signaling, reactive oxygen species (ROS) generation, and bacterial immune response were significantly downregulated. Here we report that significantly altered immune reactions may be closely associated with spaceflight-induced stress responses and have an impact on the neuronal function.
RESUMEN
Alpha(α)Klotho, a soluble transmembrane protein, facilitates calcium-phosphorus homeostasis through feedback between bone and kidney and is a potential systemic biomarker for bone-kidney health during spaceflight. We determined if: (1) plasma αKlotho was reduced after both spaceflight aboard the ISS and hindlimb unloading (HU); and (2) deficiency could be reversed with exercise. Both spaceflight and HU lowered circulating plasma αKlotho: plasma αKlotho recovered with exercise after HU.
RESUMEN
In recent decades, the principal goals of participants in the field of radiation biologists have included defining dose thresholds for cancer and non-cancer endpoints to be used by regulators, clinicians and industry, as well as informing on best practice radiation utilization and protection applications. Importantly, much of this work has required an intimate relationship between "bench" radiation biology scientists and their target audiences (such as physicists, medical practitioners and epidemiologists) in order to ensure that the requisite gaps in knowledge are adequately addressed. However, despite the growing risk for public exposure to higher-than-background levels of radiation, e.g. from long-distance travel, the increasing use of ionizing radiation during medical procedures, the threat from geopolitical instability, and so forth, there has been a dramatic decline in the number of qualified radiation biologists in the U.S. Contributing factors are thought to include the loss of applicable training programs, loss of jobs, and declining opportunities for advancement. This report was undertaken in order to begin addressing this situation since inaction may threaten the viability of radiation biology as a scientific discipline.
Asunto(s)
Médicos , Radiobiología , Humanos , Estados Unidos , Recursos HumanosRESUMEN
A limitation of simulated space radiation studies is that radiation exposure is not the only environmental challenge astronauts face during missions. Therefore, we characterized behavioral and cognitive performance of male WAG/Rij rats 3 months after sham-irradiation or total body irradiation with a simplified 5-ion mixed beam exposure in the absence or presence of simulated weightlessness using hindlimb unloading (HU) alone. Six months following behavioral and cognitive testing or 9 months following sham-irradiation or total body irradiation, plasma and brain tissues (hippocampus and cortex) were processed to determine whether the behavioral and cognitive effects were associated with long-term alterations in metabolic pathways in plasma and brain. Sham HU, but not irradiated HU, rats were impaired in spatial habituation learning. Rats irradiated with 1.5 Gy showed increased depressive-like behaviors. This was seen in the absence but not presence of HU. Thus, HU has differential effects in sham-irradiated and irradiated animals and specific behavioral measures are associated with plasma levels of distinct metabolites 6 months later. The combined effects of HU and radiation on metabolic pathways in plasma and brain illustrate the complex interaction of environmental stressors and highlights the importance of assessing these interactions.
RESUMEN
Reduced knee weight-bearing from prescription or sedentary lifestyles are associated with cartilage degradation; effects on the meniscus are unclear. Rodents exposed to spaceflight or hind limb unloading (HLU) represent unique opportunities to evaluate this question. This study evaluated arthritic changes in the medial knee compartment that bears the highest loads across the knee after actual and simulated spaceflight, and recovery with subsequent full weight-bearing. Cartilage and meniscal degradation in mice were measured via microCT, histology, and proteomics and/or biochemically after: (1) ~ 35 days on the International Space Station (ISS); (2) 13-days aboard the Space Shuttle Atlantis; or (3) 30 days of HLU, followed by a 49-day weight-bearing readaptation with/without exercise. Cartilage degradation post-ISS and HLU occurred at similar spatial locations, the tibial-femoral cartilage-cartilage contact point, with meniscal volume decline. Cartilage and meniscal glycosaminoglycan content were decreased in unloaded mice, with elevated catabolic enzymes (e.g., matrix metalloproteinases), and elevated oxidative stress and catabolic molecular pathway responses in menisci. After the 13-day Shuttle flight, meniscal degradation was observed. During readaptation, recovery of cartilage volume and thickness occurred with exercise. Reduced weight-bearing from either spaceflight or HLU induced an arthritic phenotype in cartilage and menisci, and exercise promoted recovery.
Asunto(s)
Cartílago Articular/fisiopatología , Miembro Posterior/fisiopatología , Articulación de la Rodilla/fisiopatología , Osteoartritis de la Rodilla/fisiopatología , Fenotipo , Vuelo Espacial , Animales , Femenino , Glicosaminoglicanos/análisis , Masculino , Menisco/química , Menisco/fisiopatología , Ratones , Modelos Animales , Soporte de PesoRESUMEN
The development of distant metastasis is the leading cause of prostate cancer (CaP)-related death, with the skeleton being the primary site of metastasis. While the progression of primary tumors and the growth of bone metastatic tumors are well described, the mechanisms controlling pre-metastatic niche formation and homing of CaP to bone remain unclear. Through prior studies, we demonstrated that platelet secretion was required for ongoing tumor growth and pre-metastatic tumor-induced bone formation. Platelets stimulated bone marrow-derived cell (BMDC) mobilization to tumors supporting angiogenesis. We hypothesized that proteins released by the platelet α granules were responsible for inducing changes in the pre-metastatic bone niche. We found that the classically anti-angiogenic protein thrombospondin (TSP)-1 was significantly increased in the platelets of mice with RM1 murine CaP tumors. To determine the role of increased TSP-1, we implanted tumors in TSP-1 null animals and assessed changes in tumor growth and pre-metastatic niche. TSP-1 loss resulted in increased tumor size and enhanced angiogenesis by immunohistochemistry. Conversely, TSP-1 deletion reduced BMDC mobilization and enhanced osteoclast formation resulting in decreased tumor-induced bone formation as measured by microcomputed tomography. We hypothesized that changes in the pre-metastatic niche were due to the retention of TGF-ß1 in the platelets of mice after TSP-1 deletion. To assess the importance of platelet-derived TGF-ß1, we implanted RM1 CaP tumors in mice with platelet factor 4-driven deletion of TGF-ß1 in platelets and megakaryocytes. Like TSP-1 deletion, loss of platelet TGF-ß1 resulted in increased angiogenesis with a milder effect on tumor size and BMDC release. Within the bone microenvironment, platelet TGF-ß1 deletion prevented tumor-induced bone formation due to increased osteoclastogenesis. Thus, we demonstrate that the TSP-1/TGF-ß1 axis regulates pre-metastatic niche formation and tumor-induced bone turnover. Targeting the platelet release of TSP-1 or TGF-ß1 represents a potential method to interfere with the process of CaP metastasis to bone.
RESUMEN
Biomedical use of radiation is utilized in effective diagnostic and treatment tools, yet can introduce risks to healthy tissues. High energy photons used for diagnostic purposes have high penetration depth and can discriminate multiple tissues based on attenuation properties of different materials. Likewise, the ability to deposit energy at various targets within tumors make the use of photons effective treatment for cancer. Radiation focused on a tumor will deposit energy when it interacts with a biological structure (e.g. DNA), which will result in cell kill should repair capacity of the tissue be overwhelmed. Likewise, damage to normal, non-cancerous tissues is a consequence of radiation that can lead to acute or late, chronic toxicity profiles. Adipose derived stem cells (ADSCs) are mesenchymal stem cells that have been proven to have similar characteristics to bone marrow derived stem cells, except that they are much easier to obtain. Within the body, ADSCs act as immunomodulators and assist with the maintenance and repair of tissues. They have been shown to have excellent differentiation capability, making them an extremely viable option for stem cell therapies and regenerative medicine applications. Due to the tissue ADSCs are derived from, they are highly likely to be affected by radiation therapy, especially when treating tumors localized to structures with relatively high ADSC content (eg., breast cancer). For this reason, the purpose behind this research is to better understand how ADSCs are affected by doses of radiation comparable to a single fraction of radiation therapy. We also measured the response of ADSCs to exposure at different dose rates to determine if there is a significant difference in the response of ADSCs to radiation therapy relevant doses of ionizing radiation. Our findings indicate that ADSCs exposed to Cesium (Cs 137)-gamma rays at a moderate dose of 2Gy and either a low dose rate (1.40Gy/min) or a high dose rate (7.31Gy/min) slow proliferation rate, and with cell cycle arrest in some populations. These responses ADSCs were not as marked as previously measured in other stem cell types. In addition, our results indicate that differences in dose rate in the Gy/min range typically utilized in small animal or cell irradiation platforms have a minimal effect on the function of ADSCs. The potential ADSCs have in the space of regenerative medicine makes them an ideal candidate for study with ionizing radiation, as they are one of the main cell types to promote tissue healing.
Asunto(s)
Ciclo Celular/efectos de la radiación , Células Madre Mesenquimatosas/efectos de la radiación , Adipocitos/citología , Adipocitos/efectos de la radiación , Tejido Adiposo/citología , Tejido Adiposo/efectos de la radiación , Ciclo Celular/fisiología , Puntos de Control del Ciclo Celular , Diferenciación Celular , División Celular , Proliferación Celular , Relación Dosis-Respuesta en la Radiación , Humanos , Células Madre Mesenquimatosas/metabolismo , Cultivo Primario de Células , Radiación Ionizante , Medicina Regenerativa/métodos , Células Madre/citología , Células Madre/efectos de la radiación , Cicatrización de HeridasRESUMEN
Both microgravity and radiation exposure in the spaceflight environment have been identified as hazards to astronaut health and performance. Substantial study has been focused on understanding the biology and risks associated with prolonged exposure to microgravity, and the hazards presented by radiation from galactic cosmic rays (GCR) and solar particle events (SPEs) outside of low earth orbit (LEO). To date, the majority of the ground-based analogues (e.g., rodent or cell culture studies) that investigate the biology of and risks associated with spaceflight hazards will focus on an individual hazard in isolation. However, astronauts will face these challenges simultaneously Combined hazard studies are necessary for understanding the risks astronauts face as they travel outside of LEO, and are also critical for countermeasure development. The focus of this review is to describe biologic and functional outcomes from ground-based analogue models for microgravity and radiation, specifically highlighting the combined effects of radiation and reduced weight-bearing from rodent ground-based tail suspension via hind limb unloading (HLU) and partial weight-bearing (PWB) models, although in vitro and spaceflight results are discussed as appropriate. The review focuses on the skeletal, ocular, central nervous system (CNS), cardiovascular, and stem cells responses.
Asunto(s)
Astronautas , Radiación Cósmica , Exposición a la Radiación , Vuelo Espacial , Ingravidez , Suspensión Trasera , Humanos , Actividad Solar , Soporte de PesoRESUMEN
Identifying patient mutations driving skeletal development disorders has driven our understanding of bone development. Integrin adhesion deficiency disease is caused by a Kindlin-3 (fermitin family member 3) mutation, and its inactivation results in bleeding disorders and osteopenia. In this study, we uncover a role for Kindlin-3 in the differentiation of bone marrow mesenchymal stem cells (BMSCs) down the chondrogenic lineage. Kindlin-3 expression increased with chondrogenic differentiation, similar to RUNX2. BMSCs isolated from a Kindlin-3 deficient patient expressed chondrocyte markers, including SOX9, under basal conditions, which were further enhanced with chondrogenic differentiation. Rescue of integrin activation by a constitutively activated ß3 integrin construct increased adhesion to multiple extracellular matrices and reduced SOX9 expression to basal levels. Growth plates from mice expressing a mutated Kindlin-3 with the integrin binding site ablated demonstrated alterations in chondrocyte maturation similar to that seen with the human Kindlin-3 deficient BMSCs. These findings suggest that Kindlin-3 expression mirrors RUNX2 during chondrogenesis.
Asunto(s)
Condrogénesis/genética , Proteínas del Citoesqueleto/genética , Proteínas de la Membrana/genética , Células Madre Mesenquimatosas/fisiología , Proteínas de Neoplasias/genética , Animales , Diferenciación Celular/genética , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Femenino , Humanos , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Transgénicos , Mutación/fisiologíaRESUMEN
Prostate cancer (PCa) is one of the most prevalent diseases in the North American elderly population. Moreover, many patients undergo prostate resection without further treatment and are often considered cured. As such, it is expected that many undergo total knee arthroplasty (TKA) for osteoarthritis while having a history of PCa. Nonetheless, limited research is available on this topic, and without it, surgeons may not be aware of increased complication rates. Therefore, the purpose of this study was to evaluate whether patients at a national level with a history of PCa are at increased risk for complications after TKA. A retrospective case-control, comorbidity matched paired analysis was performed. Patients were identified based on International Classification of Diseases, Ninth Revision codes and matched 1:1 ratio to age, smoker status, chronic kidney disease, diabetes, chronic lung disease, smoking status, and obesity. Patients with active disease were excluded. The 90-day outcomes of TKA were compared through univariate regressions (odds ratios [ORs] and 95% confidence intervals). A total of 2,381,706 TKA patients were identified, and after matching, each comprised 113,365 patients with the same prevalence of the matched comorbidities and demographic characteristics. A significant increase in thromboembolic events that was clinically relevant was found in pulmonary embolisms (PEs) (1.44 vs. 0.4%, OR: 3.04, p < 0.001), Moreover, an increased rate of deep vein thromboses was also seen but was found to be not clinically significant (2.55 vs. 2.85%, OR: 1.19). Although length of stay and other complications were similar, average reimbursements were higher for those with a history of PCa. In conclusion, a history of prior PCa carries significant risk as these patients continue to develop increased PE rates during the 90-day postoperative period which appears to lead to greater economic expenditure. Surgeons and payers should include this comorbidity in risk and patient-specific payment models.
Asunto(s)
Artroplastia de Reemplazo de Rodilla/efectos adversos , Osteoartritis de la Rodilla/cirugía , Neoplasias de la Próstata/epidemiología , Anciano , Anciano de 80 o más Años , Artroplastia de Reemplazo de Rodilla/estadística & datos numéricos , Estudios de Casos y Controles , Comorbilidad , Humanos , Masculino , Persona de Mediana Edad , Osteoartritis de la Rodilla/complicaciones , Osteoartritis de la Rodilla/epidemiología , Prevalencia , Neoplasias de la Próstata/complicaciones , Embolia Pulmonar/epidemiología , Embolia Pulmonar/etiología , Estudios Retrospectivos , Factores de Riesgo , Estados Unidos/epidemiología , Trombosis de la Vena/epidemiología , Trombosis de la Vena/etiologíaRESUMEN
BACKGROUND: Autograft (AG) is the gold standard bone graft due to biocompatibility, osteoconductivity, osteogenicity, and osteoinductivity. Alternatives include allografts and xenografts (XG). METHODS: We investigated the osseointegration and biocompatibility of a decellularized porcine XG within a critical defect animal model. We hypothesized that the XG will result in superior osseointegration compared to demineralized bone matrix (DBM) and equivalent immune response to AG. Critical defects were created in rat femurs and treated with XG, XG plus bone morphogenetic protein (BMP)-2, DBM, or AG. Interleukin (IL)-2 and IFN-gamma levels (inflammatory markers) were measured from animal blood draws at 1 week and 1 month post-operatively. At 1 month, samples underwent micro-positron-emission tomography (microPET) scans following 18-NaF injection. At 16 weeks, femurs were retrieved and sent for micro-computerized tomography (microCT) scans for blinded grading of osseointegration or were processed for histologic analysis with tartrate resistant acid phosphatase (TRAP) and pentachrome. RESULTS: Enzyme linked immunosorbent assay testing demonstrated greater IL-2 levels in the XG vs. AG 1 week post-op; which normalized by 28 days post-op. MicroPET scans showed increased uptake within the AG compared to all groups. XG and XG + BMP-2 showed a trend toward increased uptake compared with DBM. MicroCT scans demonstrated increased osseointegration in XG and XG + BMP groups compared to DBM. Pentachrome staining demonstrated angiogenesis and endochondral bone formation. Furthermore, positive TRAP staining in samples from all groups indicated bone remodeling. CONCLUSIONS: These data suggest that decellularized and oxidized porcine XG is biocompatible and at least equivalent to DBM in the treatment of a critical defect in a rat femur model.