RESUMEN
Recent studies suggest an increased risk of reinfection with the SARS-CoV-2 Omicron variant compared with previous variants, potentially due to an increased ability to escape immunity specific to older variants, high antigenic divergence of Omicron from earlier virus variants as well as its altered cell entry pathway. The present study sought to investigate epidemiological evidence for differential SARS-CoV-2 reinfection intervals and incidence rates for the Delta versus Omicron variants within Wales. Reinfections in Wales up to February 2022 were defined using genotyping and whole genome sequencing. The median inter-infection intervals for Delta and Omicron were 226 and 192 days, respectively. An incidence rate ratio of 2.17 for reinfection with Omicron compared to Delta was estimated using a conditional Poisson model, which accounted for several factors including sample collection date, age group, area of residence, vaccination and travel status. These findings are consistent with an increased risk of reinfection with the Omicron variant, and highlight the value of monitoring emerging variants that have the potential for causing further waves of cases.
Asunto(s)
COVID-19 , Reinfección , SARS-CoV-2 , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , COVID-19/epidemiología , COVID-19/virología , Humanos , Reinfección/virología , Reinfección/epidemiología , Gales/epidemiología , Adulto , Persona de Mediana Edad , Masculino , Femenino , Anciano , Adolescente , Incidencia , Adulto Joven , Niño , Preescolar , LactanteRESUMEN
A multidrug-resistant strain of Klebsiella pneumoniae (Kp) sequence type (ST) 1788, an otherwise uncommon ST worldwide, was isolated from 65 patients at 11 hospitals and 11 general practices across South and West Wales, UK, between February 2019 and November 2021. A collection of 97 Kp ST1788 isolates (including 94 from Wales) was analysed to investigate the diversity and spread across Wales and to identify molecular marker(s) to aid development of a strain-specific real-time PCR. Whole genome sequencing (WGS) was performed with Illumina technology and the data were used to perform phylogenetic analyses. Pan-genome analysis of further Kp genome collections was used to identify an ST1788-specific gene target; a real-time PCR was then validated against a panel of 314 strains and 218 broth-enriched screening samples. Low genomic diversity was demonstrated amongst the 94 isolates from Wales. Evidence of spread within and across healthcare facilities was found. A yersiniabactin locus and the KL2 capsular locus were identified in 85/94 (90.4â%) and 94/94 (100â%) genomes respectively; bla SHV-232, bla TEM-1, bla CTX-M-15 and bla OXA-1 were simultaneously carried by 86/94 (91.5â%) isolates; 4/94 (4.3â%) isolates also carried bla OXA-48 carbapenemase. Aminoglycoside and fluoroquinolone resistance markers were found in 94/94 (100â%) and 86/94 (91.5â%) isolates respectively. The ST1788-specific real-time PCR was 100â% sensitive and specific. Our analyses demonstrated recent clonal expansion and spread of Kp ST1788 in the community and across healthcare facilities in South and West Wales with isolates carrying well-defined antimicrobial resistance and virulence markers. An ST1788-specific marker was also identified, enabling rapid and reliable preliminary characterization of isolates by real-time PCR. This study confirms the utility of WGS in investigating novel strains and in aiding proactive implementation of molecular tools to assist infection control specialists.
Asunto(s)
Aminoglicósidos , Klebsiella pneumoniae , Humanos , Klebsiella pneumoniae/genética , Filogenia , Gales/epidemiología , AntibacterianosAsunto(s)
Klebsiella pneumoniae , Klebsiella , Klebsiella pneumoniae/genética , Klebsiella/genética , Gales , Plásmidos/genética , GenómicaRESUMEN
Recombination, the process whereby a segment of genetic material from one genome is inserted into another, producing a new chimeric genome, is an important evolutionary mechanism frequently observed in coronaviruses. The risks posed by recombination include the shuffling of advantageous mutations that may increase transmissibility, severity or vaccine escape. We present a genomic and epidemiological description of a new recombinant lineage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), XR, first identified in Wales. The Pathogen Genomics Unit (Public Health Wales, UK) sequences positive SARS-CoV-2 PCR tests using the ARTIC SARS-CoV-2 sequencing protocol. Recombinants were detected using an in-house pipeline and the epidemiological data analysed in R. Nosocomial cases were defined as those with samples taken after >7 days in hospital. Between February and March 2022, we identified 78 samples with highly similar genomes, comprising a BA.1-like 5' end, a BA.2-like 3' end and a BA.2-like spike protein. This signature is consistent with recombination and was defined as XR by Pangolin (PANGO v1.8). A total of 50â% of cases had a sample collected whilst in hospital and the first three cases were immunocompromised patients. The patient median age was 58 years (range: 4-95 years) and most of the patients were fully vaccinated against SARS-CoV-2 (74â% third dose/booster). Three patients died within 28 days of their sample collection date, one of whom had COVID-19 listed amongst ICD10 (International Classification of Diseases 10) coded causes of death. Our integrated system enabled real-time monitoring of recombinant SARS-CoV-2 for early detection, in order to rapidly risk assess and respond. This work highlights the importance of setting-based surveillance of recombinant SARS-CoV-2, as well as the need to monitor immunocompromised populations through repeat testing and sequencing.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Persona de Mediana Edad , SARS-CoV-2/genética , COVID-19/epidemiología , Gales/epidemiología , Reacción en Cadena de la Polimerasa , GenómicaRESUMEN
BACKGROUND: The Omicron (lineage B.1.1.529) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported in Wales, UK, on 3 December 2021. The aim of the study was to describe the first 1000 cases of the Omicron variant by demographic, vaccination status, travel and severe outcome status and compare this to contemporaneous cases of the Delta variant. METHODS: Testing, typing and contact tracing data were collected by Public Health Wales and analysis undertaken by the Communicable Disease Surveillance Centre (CDSC). Risk ratios for demographic factors and symptoms were calculated comparing Omicron cases to Delta cases identified over the same time period. RESULTS: By 14 December 2021, 1000 cases of the Omicron variant had been identified in Wales. Of the first 1000, just 3% of cases had a prior history of travel revealing rapid community transmission. A higher proportion of Omicron cases were identified in individuals aged 20-39, and most cases were double vaccinated (65.9%) or boosted (15.7%). Age-adjusted analysis also revealed that Omicron cases were less likely to be hospitalised (0.4%) or report symptoms (60.8%). Specifically a significant reduction was observed in the proportion of Omicron cases reporting anosmia (8.9%). CONCLUSION: Key findings include a lower risk of anosmia and a reduced risk of hospitalisation in the first 1000 Omicron cases compared with co-circulating Delta cases. We also identify that existing measures for travel restrictions to control importations of new variants identified outside the United Kingdom did not prevent the rapid ingress of Omicron within Wales.