Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 408
Filtrar
1.
Cell ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38959890

RESUMEN

Hypothalamic neural circuits regulate instinctive behaviors such as food seeking, the fight/flight response, socialization, and maternal care. Here, we identified microdeletions on chromosome Xq23 disrupting the brain-expressed transient receptor potential (TRP) channel 5 (TRPC5). This family of channels detects sensory stimuli and converts them into electrical signals interpretable by the brain. Male TRPC5 deletion carriers exhibited food seeking, obesity, anxiety, and autism, which were recapitulated in knockin male mice harboring a human loss-of-function TRPC5 mutation. Women carrying TRPC5 deletions had severe postpartum depression. As mothers, female knockin mice exhibited anhedonia and depression-like behavior with impaired care of offspring. Deletion of Trpc5 from oxytocin neurons in the hypothalamic paraventricular nucleus caused obesity in both sexes and postpartum depressive behavior in females, while Trpc5 overexpression in oxytocin neurons in knock-in mice reversed these phenotypes. We demonstrate that TRPC5 plays a pivotal role in mediating innate human behaviors fundamental to survival, including food seeking and maternal care.

2.
Science ; : eadj2537, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38935778

RESUMEN

GLP-1 receptor agonists (GLP-1RAs) are effective anti-obesity drugs. However, the precise central mechanisms of GLP-1RAs remain elusive. We administered GLP-1RAs to obese patients and observed heightened sense of preingestive satiation. Analysis of human and mouse brain samples pinpointed GLP-1R neurons in the dorsomedial hypothalamus (DMH) as candidates for encoding preingestive satiation. Optogenetic manipulation of DMHGLP-1R neurons caused satiation. Calcium imaging demonstrated that these neurons are actively involved in encoding preingestive satiation. GLP-1RA administration increased the activity of DMHGLP-1R neurons selectively during eating behavior. We further identified an intricate interplay between DMHGLP-1R neurons and arcuate NPY/AgRP neurons (ARCNPY/AgRP), to regulate food intake. Our findings reveal a hypothalamic mechanism through which GLP-1RAs control preingestive satiation, offering novel neural targets for obesity and metabolic diseases.

3.
bioRxiv ; 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38915541

RESUMEN

The luminal surface of the endothelium is exposed to dynamic blood flow patterns that are known to affect endothelial cell phenotype. While many studies have documented the phenotypic changes by gene or protein expression, less is known about the role of blood flow pattern on the endothelial cell (EC) lipidome. In this study, shotgun lipidomics was conducted on human aortic ECs (HAECs) exposed to unidirectional laminar flow (UF), disturbed flow (DF), or static conditions for 48 hrs. A total of 520 individual lipid species from 17 lipid subclasses were detected. Total lipid abundance was significantly increased for HAECs exposed to DF compared to UF conditions. Despite the increase in the total lipid abundance, HAECs maintained equivalent composition of each lipid subclass (% of total lipid) under both DF and UF. However, by lipid composition (% of total subclass), 28 lipid species were significantly altered between DF and UF. Complimentary RNA sequencing of HAECs exposed to UF or DF revealed changes in transcripts involved in lipid metabolism. Shotgun lipidomics was also performed on HAECs exposed to pro-inflammatory agonists lipopolysaccharide (LPS) or Pam3CSK4 (Pam3) for 48 hrs. Exposure to LPS or Pam3 reshaped the EC lipidome in both unique and overlapping ways. In conclusion, exposure to flow alters the EC lipidome and ECs undergo stimulus-specific lipid reprogramming in response to pro-inflammatory agonist exposure. Ultimately, this work provides a resource to profile the transcriptional and lipidomic changes that occur in response to applied flow that can be accessed by the vascular biology community to further dissect and extend our understanding of endothelial lipid biology.

4.
Nature ; 629(8014): 1133-1141, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38750368

RESUMEN

The N-methyl-D-aspartate (NMDA) receptor is a glutamate-activated cation channel that is critical to many processes in the brain. Genome-wide association studies suggest that glutamatergic neurotransmission and NMDA receptor-mediated synaptic plasticity are important for body weight homeostasis1. Here we report the engineering and preclinical development of a bimodal molecule that integrates NMDA receptor antagonism with glucagon-like peptide-1 (GLP-1) receptor agonism to effectively reverse obesity, hyperglycaemia and dyslipidaemia in rodent models of metabolic disease. GLP-1-directed delivery of the NMDA receptor antagonist MK-801 affects neuroplasticity in the hypothalamus and brainstem. Importantly, targeting of MK-801 to GLP-1 receptor-expressing brain regions circumvents adverse physiological and behavioural effects associated with MK-801 monotherapy. In summary, our approach demonstrates the feasibility of using peptide-mediated targeting to achieve cell-specific ionotropic receptor modulation and highlights the therapeutic potential of unimolecular mixed GLP-1 receptor agonism and NMDA receptor antagonism for safe and effective obesity treatment.


Asunto(s)
Maleato de Dizocilpina , Péptido 1 Similar al Glucagón , Receptor del Péptido 1 Similar al Glucagón , Obesidad , Receptores de N-Metil-D-Aspartato , Animales , Humanos , Masculino , Ratones , Ratas , Tronco Encefálico/metabolismo , Tronco Encefálico/efectos de los fármacos , Modelos Animales de Enfermedad , Maleato de Dizocilpina/efectos adversos , Maleato de Dizocilpina/farmacología , Maleato de Dizocilpina/uso terapéutico , Dislipidemias/tratamiento farmacológico , Dislipidemias/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/metabolismo , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Ratones Endogámicos C57BL , Plasticidad Neuronal/efectos de los fármacos , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Ratas Sprague-Dawley , Ratas Wistar , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores
5.
bioRxiv ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38798553

RESUMEN

Lymphocyte activation involves a transition from quiescence and associated catabolic metabolism to a metabolic state with noted similarities to cancer cells such as heavy reliance on aerobic glycolysis for energy demands and increased nutrient requirements for biomass accumulation and cell division 1-3 . Following antigen receptor ligation, lymphocytes require spatiotemporally distinct "second signals". These include costimulatory receptor or cytokine signaling, which engage discrete programs that often involve remodeling of organelles and increased nutrient uptake or synthesis to meet changing biochemical demands 4-6 . One such signaling molecule, IL-4, is a highly pleiotropic cytokine that was first identified as a B cell co-mitogen over 30 years ago 7 . However, how IL-4 signaling mechanistically supports B cell proliferation is incompletely understood. Here, using single cell RNA sequencing we find that the cholesterol biosynthetic program is transcriptionally upregulated following IL-4 signaling during the early B cell response to influenza virus infection, and is required for B cell activation in vivo . By limiting lipid availability in vitro , we determine cholesterol to be essential for B cells to expand their endoplasmic reticulum, progress through cell cycle, and proliferate. In sum, we demonstrate that the well-known ability of IL-4 to act as a B cell growth factor is through a previously unknown rewiring of specific lipid anabolic programs, relieving sensitivity of cells to environmental nutrient availability.

6.
bioRxiv ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38766019

RESUMEN

Breast cancer brain metastases (BCBM) are a significant cause of mortality and are incurable. Thus, identifying BCBM targets that reduce morbidity and mortality is critical. BCBM upregulate Stearoyl-CoA Desaturase (SCD), an enzyme that catalyzes the synthesis of monounsaturated fatty acids, suggesting a potential metabolic vulnerability of BCBM. In this study, we tested the effect of a brain-penetrant clinical-stage inhibitor of SCD (SCDi), on breast cancer cells and mouse models of BCBM. Lipidomics, qPCR, and western blot were used to study the in vitro effects of SCDi. Single-cell RNA sequencing was used to explore the effects of SCDi on cancer and immune cells in a BCBM mouse model. Pharmacological inhibition of SCD markedly reshaped the lipidome of breast cancer cells and resulted in endoplasmic reticulum stress, DNA damage, loss of DNA damage repair, and cytotoxicity. Importantly, SCDi alone or combined with a PARP inhibitor prolonged the survival of BCBM-bearing mice. When tested in a syngeneic mouse model of BCBM, scRNAseq revealed that pharmacological inhibition of SCD enhanced antigen presentation by dendritic cells, was associated with a higher interferon signaling, increased the infiltration of cytotoxic T cells, and decreased the proportion of exhausted T cells and regulatory T cells in the tumor microenvironment (TME). Additionally, pharmacological inhibition of SCD decreased engagement of immunosuppressive pathways, including the PD-1:PD-L1/PD-L2 and PVR/TIGIT axes. These findings suggest that SCD inhibition could be an effective strategy to intrinsically reduce tumor growth and reprogram anti-tumor immunity in the brain microenvironment to treat BCBM.

7.
Sci Rep ; 14(1): 9590, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671206

RESUMEN

We present an integrated optical phased array (OPA) which embeds in-line optical amplifiers and phase modulators to provide beam-forming capability with gain and beam steering in the 1465-1590 nm wavelength range. We demonstrate up to 21.5 dB net on-chip gain and up to 35.5 mW optical output power. The OPA circuit is based on an InP photonic integration platform and features the highest measured on-chip gain and output power level recorded in an active OPA (i.e., with amplification), to the best of our knowledge. Furthermore, the OPA enables the independent control of both amplitude and phase in its arms and through this we demonstrate programmable beam shaping for two cases. First, we carried out a Gaussian apodization of the power distribution profile in the OPA emitter waveguides, leading to 19.8 dB sidelobe suppression in the far-field beam, which is the highest value recorded for active OPAs, and then we demonstrated beam forming of 0th, 1st, and 2nd order 1D Hermite-Gaussian beams in free-space.

8.
Clin Transl Sci ; 17(3): e13745, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38488489

RESUMEN

The purpose of this study was to investigate changes in the lipidome of patients with sepsis to identify signaling lipids associated with poor outcomes that could be linked to future therapies. Adult patients with sepsis were enrolled within 24h of sepsis recognition. Patients meeting Sepsis-3 criteria were enrolled from the emergency department or intensive care unit and blood samples were obtained. Clinical data were collected and outcomes of rapid recovery, chronic critical illness (CCI), or early death were adjudicated by clinicians. Lipidomic analysis was performed on two platforms, the Sciex™ 5500 device to perform a lipidomic screen of 1450 lipid species and a targeted signaling lipid panel using liquid-chromatography tandem mass spectrometry. For the lipidomic screen, there were 274 patients with sepsis: 192 with rapid recovery, 47 with CCI, and 35 with early deaths. CCI and early death patients were grouped together for analysis. Fatty acid (FA) 12:0 was decreased in CCI/early death, whereas FA 17:0 and 20:1 were elevated in CCI/early death, compared to rapid recovery patients. For the signaling lipid panel analysis, there were 262 patients with sepsis: 189 with rapid recovery, 45 with CCI, and 28 with early death. Pro-inflammatory signaling lipids from ω-6 poly-unsaturated fatty acids (PUFAs), including 15-hydroxyeicosatetraenoic (HETE), 12-HETE, and 11-HETE (oxidation products of arachidonic acid [AA]) were elevated in CCI/early death patients compared to rapid recovery. The pro-resolving lipid mediator from ω-3 PUFAs, 14(S)-hydroxy docosahexaenoic acid (14S-HDHA), was also elevated in CCI/early death compared to rapid recovery. Signaling lipids of the AA pathway were elevated in poor-outcome patients with sepsis and may serve as targets for future therapies.


Asunto(s)
Ácidos Grasos Omega-3 , Sepsis , Adulto , Humanos , Lipidómica , Ácidos Grasos , Espectrometría de Masas
9.
J Pediatr Orthop ; 44(6): e530-e535, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38512220

RESUMEN

OBJECTIVE: Supracondylar humerus (SCH) fractures are common among pediatric patients, with the severity categorized using the Gartland classification system. Type 1 SCH fractures are nondisplaced and treated with immobilization, while more displaced fractures require surgery. The need for follow-up radiographs, particularly for type 1 fractures, is an area where evidence is lacking. This study investigates the clinical value and financial implications of follow-up radiographs for type 1 SCH fractures, hypothesizing that they do not alter clinical management and, therefore, represent an unnecessary expense. METHODS: This retrospective cohort study, approved by the Institutional Review Board, focused on patients under 18 with nondisplaced SCH fractures treated nonoperatively. One hundred one type 1 SCH fractures, in which the fracture was visible on presenting radiographs, were chosen from patients presenting between January 2021 and December 2022. Charts were reviewed for demographic information, time of cast removal, and complications. A pediatric orthopaedic surgeon and orthopaedic resident reviewed the radiographs to confirm the injury to be a type 1 SCH fracture. RESULTS: Among the 101 patients, after the initial presentation, 79 attended an interim visit and 101 attended a "3-week follow-up" at an average of 23 days postinjury. All patients underwent radiographs during these visits for a total of 180 radiographs after confirmation of type 1 SCH fracture. No changes in management resulted from follow-up radiographs. One instance of refracture was noted ~3 months after cast removal. There were 180 superfluous follow-up radiographs taken at subsequent clinic visits. The total charge for these radiographs was $76,001.40, averaging $752.49 per patient. CONCLUSION: Follow-up radiographs for type 1 SCH fractures did not lead to changes in clinical management, aligning with previous findings in more severe SCH fractures. This approach can reduce costs, radiation exposure, and clinic time without compromising patient care. The study can reassure providers and parents about the lack of necessity for follow-up radiographs to document healing. LEVEL OF EVIDENCE: Level-IV.


Asunto(s)
Fracturas del Húmero , Radiografía , Humanos , Estudios Retrospectivos , Fracturas del Húmero/diagnóstico por imagen , Fracturas del Húmero/terapia , Masculino , Femenino , Radiografía/métodos , Radiografía/estadística & datos numéricos , Niño , Preescolar , Estudios de Seguimiento , Lactante , Adolescente
10.
Am J Surg Pathol ; 48(6): 699-707, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38369783

RESUMEN

Myxofibrosarcoma (MFS) is a common soft tissue sarcoma of the elderly that typically shows low tumor mutational burden, with mutations in TP53 and in genes associated with cell cycle checkpoints ( RB1 , CDKN2A ). Unfortunately, no alterations or markers specific to MFS have been identified and, as a consequence, there are no effective targeted therapies. The receptor tyrosine kinase AXL, which drives cellular proliferation, is targetable by new antibody-based therapeutics. Expression of AXL messenger RNA is elevated in a variety of sarcoma types, with the highest levels reported in MFS, but the pathogenic significance of this finding remains unknown. To assess a role for AXL abnormalities in MFS, we undertook a search for AXL genomic alterations in a comprehensive genomic profiling database of 463,546 unique tumors (including 19,879 sarcomas, of which 315 were MFS) interrogated by targeted next-generation DNA and/or RNA sequencing. Notably, the only genomic alterations recurrent in a specific sarcoma subtype were AXL W451C (n = 8) and AXL W450C (n = 2) mutations. The tumors involved predominantly older adults (age: 44 to 81 [median: 72] y) and histologically showed epithelioid and spindle-shaped cells in a variably myxoid stroma, with 6 cases diagnosed as MFS, 3 as undifferentiated pleomorphic sarcoma (UPS), and 1 as low-grade sarcoma. The AXL W451C mutation was not identified in any non-sarcoma malignancy. A review of publicly available data sets revealed a single AXL W451C-mutant case of UPS that clustered with MFS/UPS by methylation profiling. Functional studies revealed a novel activation mechanism: the W451C mutation causes abnormal unregulated dimerization of the AXL receptor tyrosine kinase through disulfide bond formation between pairs of mutant proteins expressing ectopic cysteine residues. This dimerization triggers AXL autophosphorylation and activation of downstream ERK signaling. We further report sarcomas of diverse histologic subtypes with AXL gene amplifications, with the highest frequency of amplification identified in MFS cases without the W451C mutation. In summary, the activating AXL W451C mutation appears highly specific to MFS, with a novel mechanism to drive unregulated signaling. Moreover, AXL gene amplifications and messenger RNA overexpression are far more frequent in MFS than in other sarcoma subtypes. We conclude that these aberrations in AXL are distinct features of MFS and may aid diagnosis, as well as the selection of available targeted therapies.


Asunto(s)
Tirosina Quinasa del Receptor Axl , Fibrosarcoma , Mutación , Proteínas Proto-Oncogénicas , Proteínas Tirosina Quinasas Receptoras , Humanos , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Fibrosarcoma/genética , Fibrosarcoma/patología , Fibrosarcoma/enzimología , Persona de Mediana Edad , Anciano , Adulto , Femenino , Masculino , Análisis Mutacional de ADN , Biomarcadores de Tumor/genética , Predisposición Genética a la Enfermedad , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Anciano de 80 o más Años , Fenotipo , Bases de Datos Genéticas
11.
Nature ; 627(8004): 628-635, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38383790

RESUMEN

Interleukin-10 (IL-10) is a key anti-inflammatory cytokine that can limit immune cell activation and cytokine production in innate immune cell types1. Loss of IL-10 signalling results in life-threatening inflammatory bowel disease in humans and mice-however, the exact mechanism by which IL-10 signalling subdues inflammation remains unclear2-5. Here we find that increased saturated very long chain (VLC) ceramides are critical for the heightened inflammatory gene expression that is a hallmark of IL-10 deficiency. Accordingly, genetic deletion of ceramide synthase 2 (encoded by Cers2), the enzyme responsible for VLC ceramide production, limited the exacerbated inflammatory gene expression programme associated with IL-10 deficiency both in vitro and in vivo. The accumulation of saturated VLC ceramides was regulated by a decrease in metabolic flux through the de novo mono-unsaturated fatty acid synthesis pathway. Restoring mono-unsaturated fatty acid availability to cells deficient in IL-10 signalling limited saturated VLC ceramide production and the associated inflammation. Mechanistically, we find that persistent inflammation mediated by VLC ceramides is largely dependent on sustained activity of REL, an immuno-modulatory transcription factor. Together, these data indicate that an IL-10-driven fatty acid desaturation programme rewires VLC ceramide accumulation and aberrant activation of REL. These studies support the idea that fatty acid homeostasis in innate immune cells serves as a key regulatory node to control pathologic inflammation and suggests that 'metabolic correction' of VLC homeostasis could be an important strategy to normalize dysregulated inflammation caused by the absence of IL-10.


Asunto(s)
Inflamación , Interleucina-10 , Esfingolípidos , Animales , Humanos , Ratones , Ceramidas/química , Ceramidas/metabolismo , Ácidos Grasos Insaturados/biosíntesis , Ácidos Grasos Insaturados/metabolismo , Homeostasis , Inmunidad Innata , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Interleucina-10/deficiencia , Interleucina-10/genética , Interleucina-10/metabolismo , Proteínas Proto-Oncogénicas c-rel , Esfingolípidos/metabolismo
12.
J Neuroinflammation ; 21(1): 16, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200558

RESUMEN

BACKGROUND: Preterm birth is often associated with chorioamnionitis and leads to increased risk of neurodevelopmental disorders, such as autism. Preterm birth can lead to cerebellar underdevelopment, but the mechanisms of disrupted cerebellar development in preterm infants are not well understood. The cerebellum is consistently affected in people with autism spectrum disorders, showing reduction of Purkinje cells, decreased cerebellar grey matter, and altered connectivity. METHODS: Preterm rhesus macaque fetuses were exposed to intra-amniotic LPS (1 mg, E. coli O55:B5) at 127 days (80%) gestation and delivered by c-section 5 days after injections. Maternal and fetal plasma were sampled for cytokine measurements. Chorio-decidua was analyzed for immune cell populations by flow cytometry. Fetal cerebellum was sampled for histology and molecular analysis by single-nuclei RNA-sequencing (snRNA-seq) on a 10× chromium platform. snRNA-seq data were analyzed for differences in cell populations, cell-type specific gene expression, and inferred cellular communications. RESULTS: We leveraged snRNA-seq of the cerebellum in a clinically relevant rhesus macaque model of chorioamnionitis and preterm birth, to show that chorioamnionitis leads to Purkinje cell loss and disrupted maturation of granule cells and oligodendrocytes in the fetal cerebellum at late gestation. Purkinje cell loss is accompanied by decreased sonic hedgehog signaling from Purkinje cells to granule cells, which show an accelerated maturation, and to oligodendrocytes, which show accelerated maturation from pre-oligodendrocytes into myelinating oligodendrocytes. CONCLUSION: These findings suggest a role of chorioamnionitis on disrupted cerebellar maturation associated with preterm birth and on the pathogenesis of neurodevelopmental disorders among preterm infants.


Asunto(s)
Corioamnionitis , Nacimiento Prematuro , Recién Nacido , Femenino , Lactante , Animales , Humanos , Embarazo , Proteínas Hedgehog , Macaca mulatta , Escherichia coli , Recien Nacido Prematuro , Cerebelo , ARN Nuclear Pequeño
13.
Mol Metab ; 80: 101886, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38246589

RESUMEN

OBJECTIVE: The central melanocortin system is essential for the regulation of food intake and body weight. Agouti-related protein (AgRP) is the sole orexigenic component of the central melanocortin system and is conserved across mammalian species. AgRP is currently known to be expressed exclusively in the mediobasal hypothalamus, and hypothalamic AgRP-expressing neurons are essential for feeding. Here we characterized a previously unknown population of AgRP cells in the mouse hindbrain. METHODS: Expression of AgRP in the hindbrain was investigated using gene expression analysis, single-cell RNA sequencing, immunofluorescent analysis and multiple transgenic mice with reporter expressions. Activation of AgRP neurons was achieved by Designer Receptors Exclusively Activated by Designer Drugs (DREADD) and by transcranial focal photo-stimulation using a step-function opsin with ultra-high light sensitivity (SOUL). RESULTS: AgRP expressing cells were present in the area postrema (AP) and the adjacent subpostrema area (SubP) and commissural nucleus of the solitary tract (cNTS) of the mouse hindbrain (termed AgRPHind herein). AgRPHind cells consisted of locally projecting neurons as well as tanycyte-like cells. Food deprivation stimulated hindbrain Agrp expression as well as neuronal activity of subsets of AgRPHind cells. In adult mice that lacked hypothalamic AgRP neurons, chemogenetic activation of AgRP neurons resulted in hyperphagia and weight gain. In addition, transcranial focal photo-stimulation of hindbrain AgRP cells increased food intake in adult mice with or without hypothalamic AgRP neurons. CONCLUSIONS: Our study indicates that the central melanocortin system in the hindbrain possesses an orexigenic component, and that AgRPHind neurons stimulate feeding independently of hypothalamic AgRP neurons.


Asunto(s)
Hipotálamo , Melanocortinas , Ratones , Animales , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/metabolismo , Hipotálamo/metabolismo , Ratones Transgénicos , Melanocortinas/metabolismo , Rombencéfalo/metabolismo , Mamíferos/metabolismo
14.
J Lipid Res ; 65(2): 100496, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38185217

RESUMEN

Pulmonary alveolar proteinosis (PAP) is a life-threatening, rare lung syndrome for which there is no cure and no approved therapies. PAP is a disease of lipid accumulation characterized by alveolar macrophage foam cell formation. While much is known about the clinical presentation, there is a paucity of information regarding temporal changes in lipids throughout the course of disease. Our objectives were to define the detailed lipid composition of alveolar macrophages in PAP patients at the time of diagnosis and during treatment. We performed comprehensive mass spectrometry to profile the lipid signature of alveolar macrophages obtained from three independent mouse models of PAP and from PAP and non-PAP patients. Additionally, we quantified changes in macrophage-associated lipids during clinical treatment of PAP patients. We found remarkable variations in lipid composition in PAP patients, which were consistent with data from three independent mouse models. Detailed lipidomic analysis revealed that the overall alveolar macrophage lipid burden inversely correlated with clinical improvement and response to therapy in PAP patients. Specifically, as PAP patients experienced clinical improvement, there was a notable decrease in the total lipid content of alveolar macrophages. This crucial observation suggests that the levels of these macrophage-associated lipids can be utilized to assess the efficacy of treatment. These findings provide valuable insights into the dysregulated lipid metabolism associated with PAP, offering the potential for lipid profiling to serve as a means of monitoring therapeutic interventions in PAP patients.


Asunto(s)
Proteinosis Alveolar Pulmonar , Animales , Ratones , Humanos , Proteinosis Alveolar Pulmonar/tratamiento farmacológico , Proteinosis Alveolar Pulmonar/diagnóstico , Proteinosis Alveolar Pulmonar/metabolismo , Macrófagos Alveolares , Pulmón/metabolismo , Macrófagos/metabolismo , Lípidos
15.
J Lipid Res ; 65(2): 100434, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37640283

RESUMEN

Adipose tissue is the site of long-term energy storage. During the fasting state, exercise, and cold exposure, the white adipose tissue mobilizes energy for peripheral tissues through lipolysis. The mobilization of lipids from white adipose tissue to the liver can lead to excess triglyceride accumulation and fatty liver disease. Although the white adipose tissue is known to release free fatty acids, a comprehensive analysis of lipids mobilized from white adipocytes in vivo has not been completed. In these studies, we provide a comprehensive quantitative analysis of the adipocyte-secreted lipidome and show that there is interorgan crosstalk with liver. Our analysis identifies multiple lipid classes released by adipocytes in response to activation of lipolysis. Time-dependent analysis of the serum lipidome showed that free fatty acids increase within 30 min of ß3-adrenergic receptor activation and subsequently decrease, followed by a rise in serum triglycerides, liver triglycerides, and several ceramide species. The triglyceride composition of liver is enriched for linoleic acid despite higher concentrations of palmitate in the blood. To further validate that these findings were a specific consequence of lipolysis, we generated mice with conditional deletion of adipose tissue triglyceride lipase exclusively in adipocytes. This loss of in vivo adipocyte lipolysis prevented the rise in serum free fatty acids and hepatic triglycerides. Furthermore, conditioned media from adipocytes promotes lipid remodeling in hepatocytes with concomitant changes in genes/pathways mediating lipid utilization. Together, these data highlight critical role of adipocyte lipolysis in interorgan crosstalk between adipocytes and liver.


Asunto(s)
Ácidos Grasos no Esterificados , Lipólisis , Ratones , Animales , Lipólisis/fisiología , Ácidos Grasos no Esterificados/metabolismo , Lipidómica , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Hígado/metabolismo , Triglicéridos/metabolismo
16.
Arterioscler Thromb Vasc Biol ; 44(1): 48-64, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37970716

RESUMEN

Recent decades have seen spectacular advances in understanding and managing atherosclerotic cardiovascular disease, but paradoxically, clinical progress has stalled. Residual risk of atherosclerotic cardiovascular disease events is particularly vexing, given recognized lifestyle interventions and powerful modern medications. Why? Atherosclerosis begins early in life, yet clinical trials and mechanistic studies often emphasize terminal, end-stage plaques, meaning on the verge of causing heart attacks and strokes. Thus, current clinical evidence drives us to emphasize aggressive treatments that are delayed until patients already have advanced arterial disease. I call this paradigm "too much, too late." This brief review covers exciting efforts that focus on preventing, or finding and treating, arterial disease before its end-stage. Also included are specific proposals to establish a new evidence base that could justify intensive short-term interventions (induction-phase therapy) to treat subclinical plaques that are early enough perhaps to heal. If we can establish that such plaques are actionable, then broad screening to find them in early midlife individuals would become imperative-and achievable. You have a lump in your coronaries! can motivate patients and clinicians. We must stop thinking of a heart attack as a disease. The real disease is atherosclerosis. In my opinion, an atherosclerotic heart attack is a medical failure. It is a manifestation of longstanding arterial disease that we had allowed to progress to its end-stage, despite knowing that atherosclerosis begins early in life and despite the availability of remarkably safe and highly effective therapies. The field needs a transformational advance to shift the paradigm out of end-stage management and into early interventions that hold the possibility of eradicating the clinical burden of atherosclerotic cardiovascular disease, currently the biggest killer in the world. We urgently need a new evidence base to redirect our main focus from terminal, end-stage atherosclerosis to earlier, and likely reversible, human arterial disease.


Asunto(s)
Aterosclerosis , Infarto del Miocardio , Placa Aterosclerótica , Humanos , Aterosclerosis/diagnóstico , Aterosclerosis/prevención & control , Arterias
17.
Int Urogynecol J ; 35(1): 103-108, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37897521

RESUMEN

INTRODUCTION AND HYPOTHESIS: Most of the literature on pelvic organ prolapse (POP) has been generated from postmenopausal patients in high-income countries. In the Democratic Republic of the Congo (DRC), a significant proportion of patients who present for surgical management of POP are premenopausal. Little is known about the impact of POP on pelvic floor symptoms in this population. The objective was to describe pelvic floor symptoms and sexual function among premenopausal patients presenting for POP surgery in DRC. METHODS: We performed a prospective cohort study of symptomatic premenopausal patients undergoing fertility-sparing POP surgery at a large referral hospital in the DRC. Pelvic floor symptoms were evaluated with the Pelvic Floor Distress Inventory Questionnaire and sexual function with the Pelvic organ prolapse/urinary Incontinence Sexual Questionnaire. Data are presented as means with standard deviations or counts with percentages. RESULTS: A total of 107 patients were recruited between April 2019 and December 2021. All had either stage III (95.3%) or stage IV (4.7%) prolapse. Ages were 34.2 ± 6.7 years; 78.5% were married. A majority of patients experienced low abdominal pain (82.2%), heaviness or dullness (95.3%), and bulging or protrusion of the prolapse (92.5%). Almost two-thirds of patients reported no longer being sexually active, and 80% stated that they were not sexually active because of POP. Of the 37 sexually active patients (34.6%), nearly all reported significant sexual impairment because of the prolapse, with only 4 reporting no sexual impairment. CONCLUSIONS: This study represents one of the largest prospective series of patients with premenopausal POP. Our results highlight the severity of pelvic floor symptoms and the negative effects on sexual function among this patient population with POP.


Asunto(s)
Prolapso de Órgano Pélvico , Incontinencia Urinaria , Humanos , Femenino , República Democrática del Congo/epidemiología , Estudios Prospectivos , Diafragma Pélvico , Incontinencia Urinaria/epidemiología , Incontinencia Urinaria/etiología , Prolapso de Órgano Pélvico/complicaciones , Prolapso de Órgano Pélvico/epidemiología , Prolapso de Órgano Pélvico/cirugía , Encuestas y Cuestionarios
18.
Gastrointest Endosc ; 99(2): 146-154.e1, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37793505

RESUMEN

BACKGROUND AND AIMS: Endoscopic-related injuries (ERIs) for gastroenterologists are common and can impact longevity of an endoscopic career. This study examines sex differences in the prevalence of ERIs and ergonomic training during gastroenterology fellowship. METHODS: A 56-item anonymous survey was sent to 709 general and advanced endoscopy gastroenterology fellows at 73 U.S. training programs between May and June 2022. Demographic information was collected along with questions related to endoscopic environment, ergonomic instruction, technique, equipment availability, and ergonomic knowledge. Responses of female and male gastroenterology fellows were compared using χ2 and Fisher exact tests. RESULTS: Of the 236 respondents (response rate, 33.9%), 113 (44.5%) were women and 123 (52.1%) were men. Female fellows reported on average smaller hand sizes and shorter heights. More female fellows reported endoscopic equipment was not ergonomically optimized for their use. Additionally, more female fellows voiced preference for same-gender teachers and access to dial extenders and well-fitting lead aprons. High rates of postendoscopy pain were reported by both sexes, with significantly more women experiencing neck and shoulder pain. Trainees of both sexes demonstrated poor ergonomic awareness with an average score of 68% on a 5-point knowledge-based assessment. CONCLUSIONS: Physical differences exist between male and female trainees, and current endoscopic equipment may not be optimized for smaller hand sizes. This study highlights the urgent need for formal ergonomic training for trainees and trainers with consideration of stature and hand size to enhance safety, comfort, and equity in the training and practice of endoscopy.


Asunto(s)
Gastroenterólogos , Gastroenterología , Humanos , Masculino , Femenino , Gastroenterología/educación , Caracteres Sexuales , Endoscopía Gastrointestinal/educación , Gastroenterólogos/educación , Encuestas y Cuestionarios , Becas , Ergonomía
19.
Case Rep Orthop ; 2023: 4104127, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38090676

RESUMEN

Introduction: Proximal tibia physeal fractures in children are not very common but can be dangerous because they can harm popliteal fossa structures, especially the popliteal artery. Popliteal artery injuries (PAI) are most commonly the result of trauma to the lower extremity, including blunt force, hyperextension injuries, complex fractures, and knee dislocations that can compromise popliteal neurovascular structures. Case Presentation. A 14-year-old boy presents to the emergency department after being transferred from an outside hospital 24 hours after a left lower extremity hyperextension injury. Radiographs demonstrated a Salter-Harris III proximal tibia fracture with posterior displacement. ABIs were deferred due to palpable distal pulses and no evidence of compartment syndrome. Closed reduction and percutaneous pinning were planned to correct the fracture. Intraoperatively, it was discovered that knee extension decreased lower extremity perfusion while knee flexion returned perfusion. An angiography revealed a popliteal artery occlusion with no distal flow. Based on this, an above-knee to below-knee popliteal bypass using the contralateral great saphenous vein was performed followed by closed reduction and percutaneous pinning of the proximal tibia. Conclusion: Proximal tibia physeal injuries, especially the Salter-Harris III and IV injuries, warrant a high index of suspicion of popliteal artery injuries. Palpable pulses and delayed presentation in the distal lower extremity do not rule out a PAI because collateral flow to the anterior and posterior tibial arteries may mask signs of an avascular limb, highlighting the need for a thorough history and physical exam. The authors present this case to reaffirm the importance of an ankle-brachial index when evaluating hyperextension injuries with proximal tibial epiphyseal fractures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...